Advertisement

An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild

  • Wei-Lun ChaoEmail author
  • Soravit Changpinyo
  • Boqing Gong
  • Fei Sha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9906)

Abstract

We investigate the problem of generalized zero-shot learning (GZSL). GZSL relaxes the unrealistic assumption in conventional zero-shot learning (ZSL) that test data belong only to unseen novel classes. In GZSL, test data might also come from seen classes and the labeling space is the union of both types of classes. We show empirically that a straightforward application of classifiers provided by existing ZSL approaches does not perform well in the setting of GZSL. Motivated by this, we propose a surprisingly simple but effective method to adapt ZSL approaches for GZSL. The main idea is to introduce a calibration factor to calibrate the classifiers for both seen and unseen classes so as to balance two conflicting forces: recognizing data from seen classes and those from unseen ones. We develop a new performance metric called the Area Under Seen-Unseen accuracy Curve to characterize this trade-off. We demonstrate the utility of this metric by analyzing existing ZSL approaches applied to the generalized setting. Extensive empirical studies reveal strengths and weaknesses of those approaches on three well-studied benchmark datasets, including the large-scale ImageNet with more than 20,000 unseen categories. We complement our comparative studies in learning methods by further establishing an upper bound on the performance limit of GZSL. In particular, our idea is to use class-representative visual features as the idealized semantic embeddings. We show that there is a large gap between the performance of existing approaches and the performance limit, suggesting that improving the quality of class semantic embeddings is vital to improving ZSL.

Notes

Acknowledgements

B.G. is partially supported by NSF IIS-1566511. Others are partially supported by USC Graduate Fellowship, NSF IIS-1065243, 1451412, 1513966, 1208500, CCF-1139148, a Google Research Award, an Alfred. P. Sloan Research Fellowship and ARO# W911NF-12-1-0241 and W911NF-15-1-0484.

Supplementary material

419974_1_En_4_MOESM1_ESM.pdf (753 kb)
Supplementary material 1 (pdf 753 KB)

References

  1. 1.
    Sudderth, E.B., Jordan, M.I.: Shared segmentation of natural scenes using dependent Pitman-Yor processes. In: NIPS (2008)Google Scholar
  2. 2.
    Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appearance for multiclass object detection. In: CVPR (2011)Google Scholar
  3. 3.
    Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object subcategories. In: CVPR (2014)Google Scholar
  4. 4.
    Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR (2009)Google Scholar
  5. 5.
    Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR (2009)Google Scholar
  6. 6.
    Parikh, D., Grauman, K.: Relative attributes. In: ICCV (2011)Google Scholar
  7. 7.
    Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshops (2013)Google Scholar
  8. 8.
    Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., Mikolov, T.: Devise: a deep visual-semantic embedding model. In: NIPS (2013)Google Scholar
  9. 9.
    Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal transfer. In: NIPS (2013)Google Scholar
  10. 10.
    Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: NIPS (2009)Google Scholar
  11. 11.
    Yu, X., Aloimonos, Y.: Attribute-based transfer learning for object categorization with zero/one training example. In: Maragos, P., Paragios, N., Daniilidis, K. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 127–140. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Rohrbach, M., Stark, M., Schiele, B.: Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In: CVPR (2011)Google Scholar
  13. 13.
    Kankuekul, P., Kawewong, A., Tangruamsub, S., Hasegawa, O.: Online incremental attribute-based zero-shot learning. In: CVPR (2012)Google Scholar
  14. 14.
    Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: CVPR (2013)Google Scholar
  15. 15.
    Yu, F.X., Cao, L., Feris, R.S., Smith, J.R., Chang, S.F.: Designing category-level attributes for discriminative visual recognition. In: CVPR (2013)Google Scholar
  16. 16.
    Mensink, T., Gavves, E., Snoek, C.G.: Costa: co-occurrence statistics for zero-shot classification. In: CVPR (2014)Google Scholar
  17. 17.
    Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G.S., Dean, J.: Zero-shot learning by convex combination of semantic embeddings. In: ICLR (2014)Google Scholar
  18. 18.
    Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. In: NIPS (2014)Google Scholar
  19. 19.
    Al-Halah, Z., Stiefelhagen, R.: How to transfer? Zero-shot object recognition via hierarchical transfer of semantic attributes. In: WACV (2015)Google Scholar
  20. 20.
    Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: CVPR (2015)Google Scholar
  21. 21.
    Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. TPAMI 37, 2332–2345 (2015)CrossRefGoogle Scholar
  22. 22.
    Fu, Z., Xiang, T., Kodirov, E., Gong, S.: Zero-shot object recognition by semantic manifold distance. In: CVPR (2015)Google Scholar
  23. 23.
    Li, X., Guo, Y., Schuurmans, D.: Semi-supervised zero-shot classification with label representation learning. In: ICCV (2015)Google Scholar
  24. 24.
    Romera-Paredes, B., Torr, P.H.S.: An embarrassingly simple approach to zero-shot learning. In: ICML (2015)Google Scholar
  25. 25.
    Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: ICCV (2015)Google Scholar
  26. 26.
    Zhang, Z., Saligrama, V.: Zero-shot learning via semantic similarity embedding. In: ICCV (2015)Google Scholar
  27. 27.
    Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: CVPR (2016)Google Scholar
  28. 28.
    Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: CVPR (2016)Google Scholar
  29. 29.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  30. 30.
    Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 488–501. Springer, Heidelberg (2012)Google Scholar
  31. 31.
    Tang, K.D., Tappen, M.F., Sukthankar, R., Lampert, C.H.: Optimizing one-shot recognition with micro-set learning. In: CVPR (2010)Google Scholar
  32. 32.
    Gan, C., Yang, Y., Zhu, L., Zhao, D., Zhuang, Y.: Recognizing an action using its name: a knowledge-based approach. IJCV 120, 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Elhoseiny, M., Saleh, B., Elgammal, A.: Write a classifier: zero-shot learning using purely textual descriptions. In: ICCV (2013)Google Scholar
  34. 34.
    Lei Ba, J., Swersky, K., Fidler, S., Salakhutdinov, R.: Predicting deep zero-shot convolutional neural networks using textual descriptions. In: ICCV (2015)Google Scholar
  35. 35.
    Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. TPAMI 35(7), 1757–1772 (2013)CrossRefGoogle Scholar
  36. 36.
    Scheirer, W.J., Jain, L.P., Boult, T.E.: Probability models for open set recognition. TPAMI 36(11), 2317–2324 (2014)CrossRefGoogle Scholar
  37. 37.
    Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using probability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 393–409. Springer, Heidelberg (2014)Google Scholar
  38. 38.
    Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. TPAMI 36(3), 453–465 (2014)CrossRefGoogle Scholar
  39. 39.
    Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)Google Scholar
  40. 40.
    Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: LoOP: local outlier probabilities. In: CIKM (2009)Google Scholar
  41. 41.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)Google Scholar
  43. 43.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)Google Scholar
  44. 44.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM Multimedia (2014)Google Scholar
  45. 45.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. JMLR 2, 265–292 (2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Wei-Lun Chao
    • 1
    Email author
  • Soravit Changpinyo
    • 1
  • Boqing Gong
    • 2
  • Fei Sha
    • 3
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Research in Computer VisionUniversity of Central FloridaOrlandoUSA
  3. 3.Department of Computer ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations