Advertisement

An Occlusion-Resistant Ellipse Detection Method by Joining Coelliptic Arcs

  • Halil Ibrahim CakirEmail author
  • Cihan Topal
  • Cuneyt Akinlar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9906)

Abstract

In this study, we propose an ellipse detection method which gives prospering results on occlusive cases. The method starts with detection of edge segments. Then we extract elliptical arcs by computing corners and fitting ellipse to the pixels between two consecutive corners. Once the elliptical arcs are extracted, we aim to test all possible arc subsets. However, this requires exponential complexity and runtime diverges as the number of arcs increases. To accelerate the process, arc pairing strategy is deployed by using conic properties of arcs. If any pair found to be non-coelliptic, then arc combinations including that pair are eliminated. Therefore the number of possible arcs subsets is reduced and computation time is improved. In the end, ellipse fitting is applied to remaining arc combinations to decide on final ellipses. Performance of the proposed algorithm is tested on real datasets, and better results have been obtained compare to state-of-the-art algorithms.

Keywords

Ellipse detection Arc detection Feature extraction Hough transform 

References

  1. 1.
    Adams, R.A.: Calculus: A Complete Course. Pearson Addison Wesley, Boston (2006). pp. 441–442zbMATHGoogle Scholar
  2. 2.
    Akinlar, C., Topal, C.: EDPF: a real-time parameter-free edge segment detector with a false detection control. Int. J. Pattern Recogn. Artif. Intell. 26(1), 1255002 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carmona, E.J., Rincón, M., García-Feijoó, J., de-la Martínez Casa, J.M.: Identification of the optic nerve head with genetic algorithms. Artif. Intell. Med. 43(3), 243–259 (2008). http://dx.doi.org/10.1016/j.artmed.2008.04.005 CrossRefGoogle Scholar
  4. 4.
    He, X.C., Yung, N.H.C.: Corner detector based on global and local curvature properties. Opt. Eng. 47(5), 057008 (2008)CrossRefGoogle Scholar
  5. 5.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  6. 6.
    Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47, 3693–3708 (2014)CrossRefGoogle Scholar
  7. 7.
    Fornaciari, M.: Ellipse datasets. http://imagelab.ing.unimore.it/files/ellipse_dataset.zip. Accessed 3 Apr 2015
  8. 8.
    Fornaciari, M.: Source Codes for Fornaciari. http://sourceforge.net/p/yaed/code/HEAD/tree/. Accessed 3 April 2015
  9. 9.
    Kaewapichai, W., Kaewtrakulpong, P.: Robust ellipse detection by fitting randomly selected edge patches. World Acad. Sci. Eng. Technol. 24, 30–33 (2008)Google Scholar
  10. 10.
    Kharma, N., Moghnieh, H., Yao, J., Guo, Y., Abu-Baker, A., Laganiere, J., Rouleau, G., Cheriet, M.: Automatic segmentation of cells from microscopic imagery using ellipse detection. IET Image Process. 1(1), 39–47 (2007)CrossRefGoogle Scholar
  11. 11.
    Kim, E., Haseyama, M., Kitajima, H.: Fast and robust ellipse extraction from complicated images. In: Proceedings of the IEEE International Conference on Information Technology and Applications (2002)Google Scholar
  12. 12.
    Lei, Y., Wong, K.C.: Ellipse detection based on symmetry. Pattern Recogn. Lett. 20(1), 41–47 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Libuda, L., Grothues, I., Kraiss, K.F.: Ellipse detection in digital image data using geometric features. Adv. Comput. Graph. Comput. Vis. 4, 229–239 (2007)CrossRefGoogle Scholar
  14. 14.
    Libuda, L.: Source Codes for Libuda. http://ltilib.sourceforge.net. Accessed 3 April 2015
  15. 15.
    Lu, W., Tan, J.: Detection of incomplete ellipse in images with strong noise by iterative randomized hough transform (IRHT). Pattern Recogn. 41(4), 1268–1279 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Martelli, S., Marzotto, R., Colombari, A., Murino, V.: FPGA-based robust ellipse estimation for circular road sign detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 53–60, June 2010Google Scholar
  17. 17.
    McLaughlin, R.A.: Randomized hough transform: improved ellipse detection with comparison. Pattern Recogn. Lett. 19, 299–305 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nguyen, T.M., Ahuja, S., Wu, Q.M.J.: A real-time ellipse detection based on edge grouping. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3280–3286 (2009)Google Scholar
  19. 19.
    Nguyen, T.P., Kerautret, B.: Ellipse detection through decomposition of circular arcs and line segments. In: Proceedings of the 16th International Conference on Image Analysis and Processing: Part I, pp. 554–564 (2011)Google Scholar
  20. 20.
    Nurnberg, R.: Distance from a point to an ellipse. http://www2.imperial.ac.uk/ rn/distance2ellipse.pdf. Accessed 3 April 2015
  21. 21.
    Prasad, D.K., Leung, M.K.H., Cho, S.Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)CrossRefGoogle Scholar
  22. 22.
    Prasad, D.K.: Source Codes for Prasad. https://sites.google.com/site/dilipprasad/source-codes. Accessed 3 April 2015
  23. 23.
    Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Chelsea Publishing, New York (1962)Google Scholar
  24. 24.
    Song, G., Wang, H.: A fast and robust ellipse detection algorithm based on pseudo-random sample consensus. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 669–676. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)CrossRefGoogle Scholar
  26. 26.
    Teutsch, C., Berndt, D., Trostmann, E., Weber, M.: Real-time detection of elliptic shapes for automated object recognition and object tracking. Int. J. Cogn. Neurosci. 3(1), 71–86 (2006)Google Scholar
  27. 27.
    Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis. Comun. Image Represent. 23(6), 862–872 (2012). http://dx.doi.org/10.1016/j.jvcir.2012.05.004 CrossRefGoogle Scholar
  28. 28.
    Topal, C., zkan, K., Benligiray, B., Akinlar, C.: A robust CSS corner detector based on the turning angle curvature of image gradients. In: ICASSP, pp. 1444–1448. IEEE (2013). http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#TopalOBA13
  29. 29.
    Zhang, S.C., Liu, Z.Q.: A robust, real time ellipse detector. Pattern Recogn. 32(2), 273–287 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Halil Ibrahim Cakir
    • 1
    Email author
  • Cihan Topal
    • 2
    • 3
  • Cuneyt Akinlar
    • 2
  1. 1.Dumlupinar UniversityKutahyaTurkey
  2. 2.Anadolu UniversityEskisehirTurkey
  3. 3.Visea InnovativeEskisehirTurkey

Personalised recommendations