Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3d human pose reconstruction. In: CVPR (2015)
Google Scholar
Aubry, M., Maturana, D., Efros, A., Russell, B., Sivic, J.: Seeing 3d chairs: exemplar part-based 2d–3d alignment using a large dataset of cad models. In: CVPR (2014)
Google Scholar
Bansal, A., Russell, B.: Marr revisited: 2d–3d alignment via surface normal prediction. In: CVPR (2016)
Google Scholar
Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE TPAMI 35(12), 2930–2940 (2013)
CrossRef
Google Scholar
Bever, T.G., Poeppel, D.: Analysis by synthesis: a (re-) emerging program of research for language and vision. Biolinguistics 4(2–3), 174–200 (2010)
Google Scholar
Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consistent poselet activations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 168–181. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_13
CrossRef
Google Scholar
Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: CVPR (2016)
Google Scholar
Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d–r2n2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2006, Part VIII. LNCS, vol. 9912, pp. 1–17. Springer, Heidelberg (2016)
Google Scholar
Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR (2015)
Google Scholar
Fidler, S., Dickinson, S.J., Urtasun, R.: 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In: NIPS (2012)
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Google Scholar
Hejrati, M., Ramanan, D.: Analysis by synthesis: 3d object recognition by object reconstruction. In: CVPR (2014)
Google Scholar
Hejrati, M., Ramanan, D.: Analyzing 3d objects in cluttered images. In: NIPS (2012)
Google Scholar
Hinton, G.E., Ghahramani, Z.: Generative models for discovering sparse distributed representations. Philos. Trans. R. Soc. London B: Biol. Sci. 352(1358), 1177–1190 (1997)
CrossRef
Google Scholar
Hu, W., Zhu, S.C.: Learning 3d object templates by quantizing geometry and appearance spaces. IEEE TPAMI 37(6), 1190–1205 (2015)
CrossRef
Google Scholar
Huang, Q., Wang, H., Koltun, V.: Single-view reconstruction via joint analysis of image and shape collections. ACM SIGGRAPH 34(4), 87 (2015)
Google Scholar
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)
Google Scholar
Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: CVPR (2015)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
Google Scholar
Kulkarni, T.D., Kohli, P., Tenenbaum, J.B., Mansinghka, V.: Picture: a probabilistic programming language for scene perception. In: CVPR (2015)
Google Scholar
Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: NIPS (2015)
Google Scholar
Leclerc, Y.G., Fischler, M.A.: An optimization-based approach to the interpretation of single line drawings as 3d wire frames. IJCV 9(2), 113–136 (1992)
CrossRef
Google Scholar
Li, Y., Su, H., Qi, C.R., Fish, N., Cohen-Or, D., Guibas, L.J.: Joint embeddings of shapes and images via cnn image purification. ACM SIGGRAPH Asia 34(6), 234 (2015)
Google Scholar
Lim, J.J., Khosla, A., Torralba, A.: FPM: fine pose parts-based model with 3D CAD models. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 478–493. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_31
Google Scholar
Lim, J.J., Pirsiavash, H., Torralba, A.: Parsing ikea objects: fine pose estimation. In: ICCV (2013)
Google Scholar
Liu, J., Belhumeur, P.N.: Bird part localization using exemplar-based models with enforced pose and subcategory consistency. In: ICCV (2013)
Google Scholar
Lowe, D.G.: Three-dimensional object recognition from single two-dimensional images. Artif. Intell. 31(3), 355–395 (1987). Elsevier
CrossRef
Google Scholar
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR 9(11), 2579–2605 (2008)
MATH
Google Scholar
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. arXiv preprint arXiv:1603.06937 (2016)
Peng, X., Sun, B., Ali, K., Saenko, K.: Exploring invariances in deep convolutional neural networks using synthetic images. CoRR, abs/1412.7122 2 (2014)
Google Scholar
Pepik, B., Stark, M., Gehler, P., Schiele, B.: Teaching 3d geometry to deformable part models. In: CVPR (2012)
Google Scholar
Prasad, M., Fitzgibbon, A., Zisserman, A., Van Gool, L.: Finding nemo: deformable object class modelling using curve matching. In: CVPR (2010)
Google Scholar
Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_41
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
Google Scholar
Sapp, B., Taskar, B.: Modec: multimodal decomposable models for human pose estimation. In: CVPR (2013)
Google Scholar
Satkin, S., Lin, J., Hebert, M.: Data-driven scene understanding from 3D models. In: BMVC (2012)
Google Scholar
Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV (2003)
Google Scholar
Shih, K.J., Mallya, A., Singh, S., Hoiem, D.: Part localization using multi-proposal consensus for fine-grained categorization. In: BMVC (2015)
Google Scholar
Shrivastava, A., Gupta, A.: Building part-based object detectors via 3d geometry. In: ICCV, pp. 1745–1752 (2013)
Google Scholar
Su, H., Huang, Q., Mitra, N.J., Li, Y., Guibas, L.: Estimating image depth using shape collections. ACM TOG 33(4), 37 (2014)
Google Scholar
Su, H., Qi, C.R., Li, Y., Guibas, L.: Render for cnn: viewpoint estimation in images using cnns trained with rendered 3d model views. In: ICCV (2015)
Google Scholar
Sun, B., Saenko, K.: From virtual to reality: fast adaptation of virtual object detectors to real domains. In: BMVC (2014)
Google Scholar
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Web-scale training for face identification. In: CVPR (2015)
Google Scholar
Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: CVPR (2015)
Google Scholar
Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS (2014)
Google Scholar
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)
Google Scholar
Torresani, L., Hertzmann, A., Bregler, C.: Learning non-rigid 3d shape from 2d motion. In: NIPS (2003)
Google Scholar
Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: CVPR, pp. 1653–1660 (2014)
Google Scholar
Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: CVPR (2015)
Google Scholar
Vicente, S., Carreira, J., Agapito, L., Batista, J.: Reconstructing pascal voc. In: CVPR (2014)
Google Scholar
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report. CNS-TR-2011-001, California Institute of Technology (2011)
Google Scholar
Wu, J., Yildirim, I., Lim, J.J., Freeman, B., Tenenbaum, J.: Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In: NIPS (2015)
Google Scholar
Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3d object detection in the wild. In: WACV (2014)
Google Scholar
Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)
Google Scholar
Xue, T., Liu, J., Tang, X.: Example-based 3d object reconstruction from line drawings. In: CVPR (2012)
Google Scholar
Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR (2011)
Google Scholar
Yasin, H., Iqbal, U., Krüger, B., Weber, A., Gall, J.: A dual-source approach for 3d pose estimation from a single image. In: CVPR (2016)
Google Scholar
Yuille, A., Kersten, D.: Vision as bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10(7), 301–308 (2006)
CrossRef
Google Scholar
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J.: 3dmatch: learning the matching of local 3d geometry in range scans. arXiv preprint arXiv:1603.08182 (2016)
Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense correspondence via 3d-guided cycle consistency. In: CVPR (2016)
Google Scholar
Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3d shape reconstruction from 2d landmarks: a convex formulation. In: CVPR (2015)
Google Scholar
Zia, M.Z., Stark, M., Schiele, B., Schindler, K.: Detailed 3d representations for object recognition and modeling. IEEE TPAMI 35(11), 2608–2623 (2013)
CrossRef
Google Scholar