Advertisement

Towards Behavior Design of a 3D-Printed Soft Robotic Hand

  • Rob B. N. Scharff
  • Eugeni L. Doubrovski
  • Wim A. Poelman
  • Pieter P. Jonker
  • Charlie C. L. Wang
  • Jo M. P. Geraedts
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 17)

Abstract

This work presents an approach to integrate actuators, sensors, and structural components into a single product that is 3D printed using Selective Laser Sintering. The behavior of actuators, sensors, and structural components is customized to desired functions within the product. Our approach is demonstrated by the realization of human-like behavior in a 3D-printed soft robotic hand. This work describes the first steps towards creating the desired behavior by means of modeling specific volumes within the product using Additive Manufacturing. Our work shows that it is not necessary to limit the design of a soft robotic product to only integrating off-the-shelf components but instead we deeply embedded the design of the required behavior in the process of designing the actuators, sensors, and structural components.

References

  1. 1.
    Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping (2015). http://doi.org/10.1177/0278364915592961
  2. 2.
    Doubrovski, E.L., Tsai, E.Y., Dikovsky, D., Geraedts, J.M.P., Herr, H., Oxman, N.: Computer-aided design voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput. Aided Des. 60, 3–13 (2015)CrossRefGoogle Scholar
  3. 3.
    Freyer, H., Breitfeld, A., Ulrich, S., Bruns, R., Wulfsberg, J.: 3D-printed elastomeric bellow actuator for linear motion, pp. 29–32 (2014)Google Scholar
  4. 4.
    Kier, W., Smith, K. K.: Tongues, tentacles and trunks : the biomechanics of movement in muscular-hydrostats, March 1985. http://doi.org/10.1111/j.1096-3642.1985.tb01178.x
  5. 5.
    Maccurdy, R., Katzschmann, R., Kim, Y., Rus, D.: Printable Hydraulics: A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids, pp. 3878–3885 (2016)Google Scholar
  6. 6.
    Marchese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2(1), 7–26 (2015). http://doi.org/10.1089/soro.2014.0022 CrossRefGoogle Scholar
  7. 7.
    Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)CrossRefGoogle Scholar
  8. 8.
    Peele, B.N., Wallin, T.J., Zhao, H., Shepherd, R.F.: 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration Biomimetics 10(5), 055003 (2015)CrossRefGoogle Scholar
  9. 9.
    Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015). http://doi.org/10.1016/j.robot.2014.08.014 CrossRefGoogle Scholar
  10. 10.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  11. 11.
    Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 1–4 (2011)CrossRefGoogle Scholar
  12. 12.
    Slyper, R., Hodgins, J.: Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors, p. 1 (2012)Google Scholar
  13. 13.
    Zhao, H., Li, Y., Elsamadisi, A., Shepherd, R.: Scalable manufacturing of high force wearable soft actuators. Extreme Mech. Lett. 3, 89–104 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rob B. N. Scharff
    • 1
  • Eugeni L. Doubrovski
    • 1
  • Wim A. Poelman
    • 1
  • Pieter P. Jonker
    • 1
  • Charlie C. L. Wang
    • 1
  • Jo M. P. Geraedts
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations