Advertisement

Conducting Polymer Nanocomposite-Based Supercapacitors

  • Soon Yee Liew
  • Darren A. WalshEmail author
  • George Z. ChenEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The use of nanocomposites of electronically conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles if properly structured. We have recently been investigating the use of nanocomposites of electronically conducting polymers containing conducting and nonconducting nanomaterials, such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summary of some of the key issues in this area of research. This discussion includes some history, fundamental concepts, the physical and chemical processes involved and the challenges that these nanocomposite materials must overcome in order to become technologically viable. Due to space limitations, this is not a complete review of all the work that has been done in this field and we have focussed on common themes that appear in the published work. Our aim is that this chapter will help readers to understand the advantages and challenges involved in the use of these materials in supercapacitors and to identify areas for further development.

Keywords

Supercapacitors Charge storage mechanisms Conducting polymers Carbons Nanocomposites Energy storage 

References

  1. 1.
    Fakham H, Di L, Francois B (2011) IEEE Trans Ind Electron 58:85CrossRefGoogle Scholar
  2. 2.
    Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Renew Sustain Energ Rev 13:1513CrossRefGoogle Scholar
  3. 3.
    Tao Z, Francois B (2011) IEEE Trans Ind Electron 58:95Google Scholar
  4. 4.
    Haihua Z, Bhattacharya T, Duong T, Siew TST, Khambadkone AM (2011) IEEE Trans Power Electron 26:923CrossRefGoogle Scholar
  5. 5.
    Zahedi A (2011) Renew Sustain Energy Rev 15:866CrossRefGoogle Scholar
  6. 6.
    Roberts BP, Sandberg C (2011) Proc IEEE 99:1139CrossRefGoogle Scholar
  7. 7.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483CrossRefGoogle Scholar
  8. 8.
    Khaligh A, Zhihao L (2010) IEEE Trans Veh Technol 59:2806CrossRefGoogle Scholar
  9. 9.
    Ortuzar M, Moreno J, Dixon J (2007) IEEE Trans Ind Electron 54:2147CrossRefGoogle Scholar
  10. 10.
    Mastragostino M, Arbizzani C, Soavi F (2001) J Power Sour 97–8:812CrossRefGoogle Scholar
  11. 11.
    Razaq A, Nyholm L, Sjodin M, Stromme M, Mihranyan A (2012) Adv Energy Mater 2:445CrossRefGoogle Scholar
  12. 12.
    Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Proc Natl Acad Sci USA 104:13574CrossRefGoogle Scholar
  13. 13.
    Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Energy Environ Sci 7:2160CrossRefGoogle Scholar
  14. 14.
    Babu KF, Subramanian SPS, Kulandainathan MA (2013) Carbohydr Polym 94:487CrossRefGoogle Scholar
  15. 15.
    Meng Q, Wang K, Guo W, Fang J, Wei Z, She X (2014) Small 10:3187Google Scholar
  16. 16.
    Yue BB, Wang CY, Ding X, Wallace GG (2012) Electrochim Acta 68:18CrossRefGoogle Scholar
  17. 17.
    Frackowiak E, Beguin F (2001) Carbon 39:937CrossRefGoogle Scholar
  18. 18.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245CrossRefGoogle Scholar
  19. 19.
    Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797Google Scholar
  20. 20.
    Sato T, Masuda G, Takagi K (2004) Electrochim Acta 49:3603CrossRefGoogle Scholar
  21. 21.
    Peng C, Zhang SW, Zhou XH, Chen GZ (2010) Energy Environ Sci 3:1499CrossRefGoogle Scholar
  22. 22.
    Fan L-Q, Liu G-J, Wu J-H, Liu L, Lin J-M, Wei Y-L (2014) Electrochim Acta 137:26CrossRefGoogle Scholar
  23. 23.
    Khomenko V, Raymundo-Pinero E, Frackowiak E, Beguin F (2006) Appl Phys A Mater Sci Process 82:567CrossRefGoogle Scholar
  24. 24.
    Snook GA, Wilson GJ, Pandolfo AG (2009) J Power Sour 186:216CrossRefGoogle Scholar
  25. 25.
    Khomenko V, Raymundo-Pinero E, Beguin F (2006) J Power Sour 153:183CrossRefGoogle Scholar
  26. 26.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sour 157:11CrossRefGoogle Scholar
  27. 27.
    Wang M-X, Wang C-Y, Chen M-M, Wang Y-S, Sh Z-Q, Du X, Li T-Q, Hu Z-J (2010) New Carbon Mater 25:285CrossRefGoogle Scholar
  28. 28.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Carbon 49:2917CrossRefGoogle Scholar
  29. 29.
    Brousse T, Taberna P-L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Belanger D, Simon P (2007) J Power Sour 173:633CrossRefGoogle Scholar
  30. 30.
    Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Belanger D (2003) J Electrochem Soc 150:A747CrossRefGoogle Scholar
  31. 31.
    Ryu KS, Lee YG, Hong YS, Park YJ, Wu XL, Kim KM, Kang MG, Park NG, Chang SH (2004) Electrochim Acta 50:843CrossRefGoogle Scholar
  32. 32.
    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) J Power Sour 153:413CrossRefGoogle Scholar
  33. 33.
    Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Soavi F, Sarrau JF, Lailler P, Conte M, Rossi E, Saguatti S (2003) J Electrochem Soc 150:A645CrossRefGoogle Scholar
  34. 34.
    Sivaraman P, Bhattacharrya AR, Mishra SP, Thakur AP, Shashidhara K, Samui AB (2013) Electrochim Acta 94:182CrossRefGoogle Scholar
  35. 35.
    Ng KC, Zhang SW, Peng C, Chen GZ (2009) J Electrochem Soc 156:A846CrossRefGoogle Scholar
  36. 36.
    Brousse T, Belanger D (2003) Electrochem Solid State Lett 6:A244CrossRefGoogle Scholar
  37. 37.
    Suppes GM, Cameron CG, Freund MS (2010) J Electrochem Soc 157:A1030CrossRefGoogle Scholar
  38. 38.
    Khoh WH, Hong JD (2014) Colloids Surf A 456:26CrossRefGoogle Scholar
  39. 39.
    Xiao QF, Zhou X (2003) Electrochim Acta 48:575CrossRefGoogle Scholar
  40. 40.
    Mastragostino M, Paraventi R, Zanelli A (2000) J Electrochem Soc 147:3167CrossRefGoogle Scholar
  41. 41.
    Ghenaatian HR, Mousavi MF, Rahmanifar MS (2012) Electrochim Acta 78:212CrossRefGoogle Scholar
  42. 42.
    Mak WF, Wee G, Aravindan V, Gupta N, Mhaisalkar SG, Madhavi S (2012) J Electrochem Soc 159:A1481CrossRefGoogle Scholar
  43. 43.
    Zhang S, Peng C, Ng KC, Chen GZ (2010) Electrochim Acta 55:7447CrossRefGoogle Scholar
  44. 44.
    Zheng JP, Jow TR (1996) J Power Sour 62:155CrossRefGoogle Scholar
  45. 45.
    Zhou XH, Peng C, Chen GZ (2012) AIChE J 58:974CrossRefGoogle Scholar
  46. 46.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520CrossRefGoogle Scholar
  47. 47.
    Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci Mater Int 18:777CrossRefGoogle Scholar
  48. 48.
    Conway BE, Birss V, Wojtowicz J (1997) J Power Sour 66:1CrossRefGoogle Scholar
  49. 49.
    Chen GZ (2013) Prog Nat Sci Mater Int 23:245CrossRefGoogle Scholar
  50. 50.
    Chae JH, Ng KC, Chen GZ (2010) Proc Inst Mech Eng Part A J Power Energy 224:479CrossRefGoogle Scholar
  51. 51.
    Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525CrossRefGoogle Scholar
  52. 52.
    Zhang SW, Chen GZ (2008) Energy Mater 3:186CrossRefGoogle Scholar
  53. 53.
    Malinauskas A (2001) Polymer 42:3957CrossRefGoogle Scholar
  54. 54.
    Peng C (2007) PhD, The University of NottinghamGoogle Scholar
  55. 55.
    Park YW (2010) Chem Soc Rev 39:2428CrossRefGoogle Scholar
  56. 56.
    Heeger AJ (2010) Chem Soc Rev 39:2354CrossRefGoogle Scholar
  57. 57.
    Zhang JT, Zhao XS (2012) J Phys Chem C 116:5420CrossRefGoogle Scholar
  58. 58.
    Lam JWY, Tang BZ (2005) Acc Chem Res 38:745CrossRefGoogle Scholar
  59. 59.
    Huq R, Farrington GC (1984) J Electrochem Soc 131:819CrossRefGoogle Scholar
  60. 60.
    Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295CrossRefGoogle Scholar
  61. 61.
    Dhibar S, Sahoo S, Das CK (2013) Polym Compos 34:517CrossRefGoogle Scholar
  62. 62.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Carbon 48:487CrossRefGoogle Scholar
  63. 63.
    Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481CrossRefGoogle Scholar
  64. 64.
    Snook GA, Peng C, Fray DJ, Chen GZ (2007) Electrochem Commun 9:83CrossRefGoogle Scholar
  65. 65.
    Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) J Power Sour 190:578CrossRefGoogle Scholar
  66. 66.
    Peng C, Hu D, Chen GZ (2011) Chem Commun 47:4105CrossRefGoogle Scholar
  67. 67.
    Ran F, Tan YT, Liu J, Zhao L, Kong LB, Luo YC, Kang L (2012) Polym Adv Technol 23:1297CrossRefGoogle Scholar
  68. 68.
    Chen W, Rakhi RB, Alshareef HN (2013) J Mater Chem A 1:3315CrossRefGoogle Scholar
  69. 69.
    Khomenko V, Frackowiak E, Beguin F (2005) Electrochim Acta 50:2499CrossRefGoogle Scholar
  70. 70.
    Li C, Shi GQ (2011) Electrochim Acta 56:10737CrossRefGoogle Scholar
  71. 71.
    Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926CrossRefGoogle Scholar
  72. 72.
    Liew SY, Walsh DA, Thielemans W (2013) RSC Adv 3:9158CrossRefGoogle Scholar
  73. 73.
    Wu X, Chabot VL, Kim BK, Yu A, Berry RM, Tam KC (2014) Electrochim Acta 138:139CrossRefGoogle Scholar
  74. 74.
    Frackowiak E (2007) Phys Chem Chem Phys 9:1774CrossRefGoogle Scholar
  75. 75.
    Kim JY, Kim KH, Kim KB (2008) J Power Sour 176:396CrossRefGoogle Scholar
  76. 76.
    Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610CrossRefGoogle Scholar
  77. 77.
    Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Adv Mater 12:522CrossRefGoogle Scholar
  78. 78.
    Randriamahazaka H, Bonnotte T, Noel V, Martin P, Ghilane J, Asaka K, Lacroix JC (2011) J Phys Chem B 115:205CrossRefGoogle Scholar
  79. 79.
    Snook GA, Chen GZ, Fray DJ, Hughes M, Shaffer M (2004) J Electroanal Chem 568:135CrossRefGoogle Scholar
  80. 80.
    Wu MQ, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) J Mater Chem 15:2297CrossRefGoogle Scholar
  81. 81.
    Gupta V, Miura N (2006) Electrochim Acta 52:1721CrossRefGoogle Scholar
  82. 82.
    Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) J Power Sour 171:1062CrossRefGoogle Scholar
  83. 83.
    Wang K, Zhao P, Zhou XM, Wu HP, Wei ZX (2011) J Mater Chem 21:16373CrossRefGoogle Scholar
  84. 84.
    Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Electrochim Acta 123:151CrossRefGoogle Scholar
  85. 85.
    Peng C, Snook GA, Fray DJ, Shaffer MSP, Chen GZ (2006) Chem Commun 4629Google Scholar
  86. 86.
    Bai XX, Hu XJ, Zhou SY, Yan J, Sun CH, Chen P, Li LF (2013) Electrochim Acta 87:394CrossRefGoogle Scholar
  87. 87.
    Hou Y, Cheng YW, Hobson T, Liu J (2010) Nano Lett 10:2727CrossRefGoogle Scholar
  88. 88.
    Liu A, Li C, Bai H, Shi G (2010) J Phys Chem C 114:22783CrossRefGoogle Scholar
  89. 89.
    Chang H-H, Chang C-K, Tsai Y-C, Liao C-S (2012) Carbon 50:2331CrossRefGoogle Scholar
  90. 90.
    Zhang LL, Zhao SY, Tian XN, Zhao XS (2010) Langmuir 26:17624CrossRefGoogle Scholar
  91. 91.
    Zhang JT, Chen P, Oh BHL, Chan-Park MB (2013) Nanoscale 5:9860CrossRefGoogle Scholar
  92. 92.
    Mao L, Chan HSO, Wu JS (2012) RSC Adv 2:10610CrossRefGoogle Scholar
  93. 93.
    Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) J Power Sour 197:319CrossRefGoogle Scholar
  94. 94.
    Lu X, Zhang F, Dou H, Yuan C, Yang S, Hao L, Shen L, Zhang L, Zhang X (2012) Electrochim Acta 69:160CrossRefGoogle Scholar
  95. 95.
    Liu Y, Zhang Y, Ma GH, Wang Z, Liu KY, Liu HT (2013) Electrochim Acta 88:519CrossRefGoogle Scholar
  96. 96.
    Zhu CZ, Zhai JF, Wen D, Dong SJ (2012) J Mater Chem 22:6300CrossRefGoogle Scholar
  97. 97.
    Zhang J, Yu Y, Liu L, Wu Y (2013) Nanoscale 5:3052CrossRefGoogle Scholar
  98. 98.
    Zhang F, Xiao F, Dong ZH, Shi W (2013) Electrochim Acta 114:125CrossRefGoogle Scholar
  99. 99.
    Lai LF, Wang L, Yang HP, Sahoo NG, Tam QX, Liu JL, Poh CK, Lim SH, Shen ZX, Lin JY (2012) Nano Energy 1:723CrossRefGoogle Scholar
  100. 100.
    Wang X, Wang TM, Yang C, Li HD, Liu P (2013) Appl Surf Sci 287:242CrossRefGoogle Scholar
  101. 101.
    Feng W, Zhang QW, Li Y, Feng YY (2014) J Solid State Electrochem 18:1127CrossRefGoogle Scholar
  102. 102.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Electrochem Commun 11:1158CrossRefGoogle Scholar
  103. 103.
    Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) ACS Nano 4:5019CrossRefGoogle Scholar
  104. 104.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Chem. Mat. 22:1392CrossRefGoogle Scholar
  105. 105.
    Lu X, Dou H, Yang S, Hao L, Zhang L, Shen L, Zhang F, Zhang X (2011) Electrochim Acta 56:9224CrossRefGoogle Scholar
  106. 106.
    Li L, Raji ARO, Fei HL, Yang Y, Samuel ELG, Tour JM (2013) ACS Appl Mater Interf 5:6622CrossRefGoogle Scholar
  107. 107.
    Wen JF, Jiang YD, Yang YJ, Li SB (2014) J Mater Sci Mater El 25:1063CrossRefGoogle Scholar
  108. 108.
    Yang YJ, Zhang LN, Li SB, Yang WY, Xu JH, Jiang YD, Wen JF (2013) J Mater Sci Mater El 24:2245CrossRefGoogle Scholar
  109. 109.
    Chen J, Jia C, Wan Z (2014) Synth Met 189:69CrossRefGoogle Scholar
  110. 110.
    Wu X, Tang J, Duan Y, Yu A, Berry RM, Tam KC (2014) J Mater Chem A 2:19268CrossRefGoogle Scholar
  111. 111.
    Liew S, Thielemans W, Walsh D (2014) J Solid State Electrochem 18:3307Google Scholar
  112. 112.
    Olsson H, Nystrom G, Stromme M, Sjodin M, Nyholm L (2011) Electrochem Commun 13:869CrossRefGoogle Scholar
  113. 113.
    Olsson H, Carlsson DO, Nystrom G, Sjodin M, Nyholm L, Stromme M (2012) J Mater Sci 47:5317CrossRefGoogle Scholar
  114. 114.
    Carlsson DO, Nystrom G, Zhou Q, Berglund LA, Nyholm L, Stromme M (2012) J Mater Chem 22:19014CrossRefGoogle Scholar
  115. 115.
    Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) J Phys Chem C 116:13013CrossRefGoogle Scholar
  116. 116.
    Wang H, Bian L, Zhou P, Tang J, Tang W (2013) J Mater Chem A 1:578CrossRefGoogle Scholar
  117. 117.
    Hu D, Peng C, Chen GZ (2010) ACS Nano 4:4274CrossRefGoogle Scholar
  118. 118.
    Burke A (2000) J Power Sour 91:37CrossRefGoogle Scholar
  119. 119.
    Chu A, Braatz P (2002) J Power Sour 112:236CrossRefGoogle Scholar
  120. 120.
    Zhu YL, Shi KY, Zhitomirsky I (2014) J Power Sour 268:233CrossRefGoogle Scholar
  121. 121.
    Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Electrochim Acta 56:7460CrossRefGoogle Scholar
  122. 122.
    Niu ZQ, Luan PS, Shao Q, Dong HB, Li JZ, Chen J, Zhao D, Cai L, Zhou WY, Chen XD, Xie SS (2012) Energy Environ Sci 5:8726CrossRefGoogle Scholar
  123. 123.
    Li Z-F, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J (2014) Carbon 71:257CrossRefGoogle Scholar
  124. 124.
    Paul S, Choi KS, Lee DJ, Sudhagar P, Kang YS (2012) Electrochim Acta 78:649CrossRefGoogle Scholar
  125. 125.
    Meng C, Liu C, Chen L, Hu C, Fan S (2010) Nano Lett 10:4025CrossRefGoogle Scholar
  126. 126.
    Zhou Y, Lachman N, Ghaffari M, Xu H, Bhattacharya D, Fattahi P, Abidian MR, Wu S, Gleason KK, Wardle BL, Zhang QM (2014) J Mater Chem A 2:9964CrossRefGoogle Scholar
  127. 127.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamUK
  2. 2.GSK Carbon Neutral Laboratory for Sustainable Chemistry, School of ChemistryUniversity of Nottingham, Jubilee CampusNottinghamUK

Personalised recommendations