Skip to main content

Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors

  • Chapter
  • First Online:
Conducting Polymer Hybrids

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The last decade has seen a significant interest in the composites of conducting polymers (CPs) and carbon nanotubes (CNTs). The CP–CNT composites present great interest for various applications due to the large surface area, high mechanical strength and high conductivity. The CP–CNT composites are used as actuators, fuel cells, electronic devices and ‘supercapacitors’. The topic being very vast, particular emphasis has been given to polypyrrole (PPy) and polyaniline (PANi) based CNT composites for their use as supercapacitors. Polypyrrole and polyaniline have good conductivity and are cost effective for their use in electrical applications. Both the polymers have been a key interest for supercapacitive properties in the last decade. High specific capacitance (SC), high electrochemical stability and good cyclability are the main requirements for material to be used for energy storage properties. The present chapter provides an overview of past and current research on conducting polymer/carbon nanotube (CP–CNT) composite materials for use as supercapacitor electrodes. The various factors affecting the performance, cyclic stability and charge storage properties of CP–CNT composites, such as the method used for the synthesis of the composite, shape and size of polymer nanoparticles as well as the weight percentage of both the entities in the composite have been discussed in the present chapter. An overview of current research on PPy–CNT and PANi–CNT composites for their use as supercapacitor electrodes has been given in the chapter. The focus is given towards the various factors affecting their performance with relevant literature and description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CP:

Conducting polymer

CNT:

Carbon nanotube

CNTA:

Carbon nanotube arrays

SWCNT:

Single walled carbon nanotube

MWCNT:

Multi walled carbon nanotube

PPy:

Polypyrrole

PANi:

Polyaniline

PC:

Pseudo capacitor

EDLS:

Electrical double layer capacitor

SEM:

Scanning electron microscope

TEM:

Tunnelling electron microscope

SC:

Specific capacitance

GN:

Graphene

CV:

Cyclic voltammetry

CELT:

Charge energy limited model

SPADNS:

Sulfanilic acid azochromatrop

CHR-BS:

Sulfonazo III sodium salt

VACNT:

Vertically aligned carbon nanotube

HC:

Hybrid capacitor

P–CNT:

Air plasma activated carbon nanotube

GNS:

Graphene nanosheet

References

  1. Lu X, Zhang W, Wang C, Wen T, Wei Y (2011) Prog Polym Sci 36:671–712

    Google Scholar 

  2. Wan M (2008) Conducting polymers with Micro or Nanometer Structure. Springer, New York

    Google Scholar 

  3. Ganesh EN (2013) Int J Innov Technol Explor Eng 2:311–320

    Google Scholar 

  4. Ajayan PM, Ebbesen TW (1997) Rep Prog Phys 60:1025

    Google Scholar 

  5. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Nanoscale Res Lett 9(393):13

    Google Scholar 

  6. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Phys Rev Lett 76(6):971–974

    Google Scholar 

  7. Rao CNR, FRS, Govindraj A (2005) Nanotubes and Nanowires. RSC Publishing, Cambridge, UK

    Google Scholar 

  8. Oueiny C, Berlioz S, Perrin FX (2014) Prog Polym Sci 39:707–748

    Google Scholar 

  9. Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Science 339:535–539

    Google Scholar 

  10. Bianco A, Kostarelos K, Prato M (2005) Curr Opin Chem Biol 9:674–679

    Google Scholar 

  11. Baskaran D, Mays JW, Bratcher MS (2005) Chem Mater 17:3389–3397

    Google Scholar 

  12. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357–401

    Google Scholar 

  13. Baibarac M, Gómez-Romero P (2006) J Nanosci Nanotechnol 6:1–14

    Google Scholar 

  14. Hirsch A (2002) Angew Chem Int Ed 41:1853–1859

    Google Scholar 

  15. Byrne MT, Gunko YK (2010) Adv Mater 22:1672–1688

    Google Scholar 

  16. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265:1212–1214

    Google Scholar 

  17. Zhang X, Zhang J, Wang R, Zhu T, Liu Z (2004) Chem Phys Chem 5:998–1002

    Google Scholar 

  18. Bose S, Taoas K, Mishra AK, Rajashekar R, Kim NH, Lee JH (2012) J Mater Chem 22:767–784

    Google Scholar 

  19. Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) J Power Sources 197:319–324

    Google Scholar 

  20. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Google Scholar 

  21. Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Synth Met 159:1717–1722

    Google Scholar 

  22. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Google Scholar 

  23. Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Electrochim Acta 155:402–410

    Google Scholar 

  24. Frackowiak E, Beguin F (2001) Carbon 39:937–950

    Google Scholar 

  25. Jiahua Z, Hongbo G, Zhiping L, Neel H, David PY, Suying W, Zhanhu G (2012) Langmuir 28:10246–10255

    Google Scholar 

  26. Li J, Xie H, Li Y, Liu J, Li Z (2011) J Power Sources 196:10775–10781

    Google Scholar 

  27. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk W (2005) Nat Mater 4:366–377

    Google Scholar 

  28. Wang LX, Li XG, Yang YL (2001) React Funct Polym 47:125–139

    Google Scholar 

  29. Mandal BM, Banerjee P, Bhattacharyya SN (1996) In: Salamone JC (ed) Polypyrrole (processable dispersions), in polymeric materials encyclopedia. CRC Press, Boca Raton, 6670–6678

    Google Scholar 

  30. Rodriguez J, Grande HJ, Otero TF (1997) Handbook of organic conductive molecules and polymers, vol 2. Wiley, Chichester, pp 415–468

    Google Scholar 

  31. Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) J Phys D Appl Phys 37:1965–1969

    Google Scholar 

  32. Kang HC, Geckeler KE (2000) Polymer 41:6931–6934

    Google Scholar 

  33. Puanglek N, Sittatrakul A, Lerdwijitjarud W (2010) Sci J UBU 1:35-42

    Google Scholar 

  34. Wang J, Dai J, Yarlagadda T (2005) Langmuir 21:9–12

    Google Scholar 

  35. Zhang X, Lu Z, Wen M, Liang H, Zhang J, Liu Z (2005) J Phys Chem B 109:1101–1107

    Google Scholar 

  36. Abeles B, Sheng P, Coutts MD, Arie Y (1975) Adv Phys 24:407

    Google Scholar 

  37. Zhang X, Song W (2009) Front Mater Sci China 3(2):194–200

    Google Scholar 

  38. Liu J, An J, Ma Y, Li M, Ma R (2012) J Electrochem Soc 159:A828–A833

    Google Scholar 

  39. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) J Power Sources 196:5990–5996

    Google Scholar 

  40. Sharma R, Rastogi A, Desu S (2008) Electrochem Commun 10:268–272

    Google Scholar 

  41. Chang HH, Chang CK, Tsai YC, Liao CS (2012) Carbon 50:2331–2336

    Google Scholar 

  42. Shi K, Zhitomirsky I (2013) J Power Sources 240:42–49

    Google Scholar 

  43. Zhu Y, Shi K, Zhitomirsky I (2014) J Power Sources 268:233–239

    Google Scholar 

  44. Silva AMT, Machado BF, Figueiredo JL, Faria JL (2009) Carbon 47:1670–1679

    Google Scholar 

  45. Mi H, Zhang X, Xu Y, Xiao F (2010) Appl Surf Sci 256:2284–2288

    Google Scholar 

  46. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, Li J (2010) J Power Sources 195:674–679

    Google Scholar 

  47. Paul S, Lee YS, Choi JA, Kang YC, Kim DW (2010) Bull Korean Chem Soc 31:1228–1232

    Google Scholar 

  48. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Electrochim Acta 56:7460–7466

    Google Scholar 

  49. Lu X, Zhang F, Dou H, Yuan C, Yang S, Hao L, Shen L, Zhang L, Zhang X (2012) Electrochim Acta 69:160–166

    Google Scholar 

  50. Zhu Y, Zhitomirsky I (2013) Synth Met 185:126–132

    Google Scholar 

  51. Weng B, Shepherd R, Chen J, Wallace GG (2011) J Mater Chem 21:1918–1924

    Google Scholar 

  52. Han M, Chu Y, Han D, Liu Y (2006) J Colloid Interface Sci 296:110–117

    Google Scholar 

  53. Qie L, Yuan LX, Zhang WX, Chen WM, Huang YH (2012) J Electrochem Soc 159:A1624–A1629

    Google Scholar 

  54. Su Y, Zhitomirsky I (2015) Appl Energy 153:48–55

    Google Scholar 

  55. Warren R, Sammoura F, Teh KS, Kozinda A, Zang X, Lin L (2014) Sens Actuators A: Physical 231:65–73

    Google Scholar 

  56. Oliveira AHP, de Oliveira HP (2014) J Power Sources 268:45–49

    Google Scholar 

  57. Wang B, Qiu J, Feng H, Sakai E (2015) Electrochim Acta 151:230–239

    Google Scholar 

  58. Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M (2010) Carbon 48:1369

    Google Scholar 

  59. Tseng W, Tseng C, Chuang P, Lo A, Kuo C (2008) J Phys Chem B 112:18431

    Google Scholar 

  60. Yang L, Shi Z, Hao W (2014) Surf Coat Technol 251:122

    Google Scholar 

  61. Yang L, Shi Z, Yang W (2015) Electrochim Acta 153:76–82

    Google Scholar 

  62. Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Polymer 37:5017–5047

    Google Scholar 

  63. Jaymand M (2013) Prog Polym Sci 38:1287–1306

    Google Scholar 

  64. Saroop M, Ghosh AK, Mathur GN (2003) Intern J Plastics Technol 7:41–61

    Google Scholar 

  65. Levon K, Ho KH, Zheng WY, Karna T, Taka T, Osterholm JE (1995) Polymer 36:2733–2738

    Google Scholar 

  66. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Mater Chem Phys 73:106–110

    Google Scholar 

  67. Kulkarni VG, Campbell JC, Mathew WR (1993) Synth Met 57:3780–3785

    Google Scholar 

  68. Paul RK, Pillai CKS (2000) Synth Met 114:27–35

    Google Scholar 

  69. Pron A, Rannou P (2002) Prog Polym Sci 27:135–190

    Google Scholar 

  70. Massoumi B, Abdollahi M, Jahed-Shabestari S, Entezami AA (2013) J Appl Polym Sci 128:47–53

    Google Scholar 

  71. Saini P, Choudhary V (2013) J Mater Sci 48:797–804

    Google Scholar 

  72. Mu S (2008) J Phys Chem B 112:6344–6349

    Google Scholar 

  73. Kulkarni MV, Viswanath AK (2004) Eur Polym J 40:379–384

    Google Scholar 

  74. Grigoras M, Catargiu AM, Tudorache F, Dobromir M (2012) Iranian Polym J 21:131–141

    Google Scholar 

  75. Teh CH, Rozaidi R, Rusli D, Sahrim HA (2009) Polym Plastics Technol Eng 48:17–24

    Google Scholar 

  76. Yasuda T, Yamaguchi I, Yamamoto T (2003) J Mater Chem 13:2138–2144

    Google Scholar 

  77. Zheng WY, Levon K, Laakso J, Oesterholm JE (1994) Macromol 27:7754–7768

    Google Scholar 

  78. Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, Kalantar-zadeh K, Hoek EMV, Wang KL, Kaner RB (2011) Nano Lett 11:954–959

    Google Scholar 

  79. Cochet M, Maser WK, Benito AM, Callejas MA, Martínez MT, Benoit JM, Schreiber J, Chauvet O (2001) Chem Commun 1450–1451

    Google Scholar 

  80. Wei Z, Wan M, Lin T, Dai L (2003) Adv Mater 15:136–139

    Google Scholar 

  81. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Carbon 41:1551–1557

    Google Scholar 

  82. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Electrochim Acta 55:3904–3908

    Google Scholar 

  83. Dong B, He BL, Xu CL, Li HL (2007) Mater Sci Eng B 143:7–13

    Google Scholar 

  84. Gupta V, Miura N (2006) Electrochim Acta 52:1721–1726

    Google Scholar 

  85. Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) Synth Met 159:260–266

    Google Scholar 

  86. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) J Power Sources 171:1062–1068

    Google Scholar 

  87. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Electrochem Commun 10:1056–1059

    Google Scholar 

  88. Zhang H, Cao G, Wang W, Yuan K, Xu B, Zhang W, Cheng J, Yang Y (2009) Electrochim Acta 54:1153–1159

    Google Scholar 

  89. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619–2623

    Google Scholar 

  90. Meng C, Liu C, Fan S (2009) Electrochem Commun 11:186–189

    Google Scholar 

  91. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Nano Lett 10:4025–4031

    Google Scholar 

  92. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) J Power Sources 195:3041–3045

    Google Scholar 

  93. Zhang Z, Zhang Y, Yang K, Yi K, Zhou Z, Huang A, Mai K, Lu X (2015) J Mater Chem A 03:1884–1889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, P. (2017). Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors. In: Kumar, V., Kalia, S., Swart, H. (eds) Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-46458-9_10

Download citation

Publish with us

Policies and ethics