Abstract
Sleep is the quintessential circadian behavior, driven by homeostatic and environmental forces, and essential for survival. Disruption of circadian rhythms leads to numerous metabolic, cardiovascular, and neuropsychiatric diseases. Depression displays its own rhythmic pattern with recurrent episodes frequently driven by environmental cues including poor sleep. Insomnia, defined as difficulty initiating or maintaining sleep or non-restorative sleep that causes significant daytime impairment, affects the majority of individuals with depression. Insomnia symptoms frequently persist even after remission from affective disturbances and are significant risk factors for recurrence and poor clinical outcomes. Research has demonstrated a bidirectional and longitudinal risk relationship between insomnia and depressive disorders, however the exact mechanisms underlying these associations remain unknown. The evidence implicates dopamine as a neurobiological factor associated with symptoms of insomnia and depression. Dopamine is a neuromodulator that regulates reward processing, arousal states, affect, and mood regulation. However, the putative role of dopamine in insomnia and depression has largely been underappreciated and understudied. Indeed, elucidating the common dopaminergic pathways linking mood and sleep disorders may shed light on the development and progression of common symptoms of both disorders and provide targets for interventions. It is reasonable to glean from this chapter that a common alteration in mesolimbic dopaminergic signaling pathway underlies the comorbidity of depression, insomnia, and circadian rhythm disorders. In the present chapter, our goals are to (a) provide a brief overview of the role of dopamine in sleep and wake, with a focus on sleep architecture; (b) describe the role of dopamine in depression; (c) discuss the possible implications of sleep architecture-mediated dopaminergic changes for depression, and (d) discuss the possible implications of circadian-mediated dopaminergic changes for depression.
And yet in certain of these cases there is mere anger and grief and sad dejection of mind…they are suspicious of poisoning or flee to the desert from misanthropy or turn suspicious or contract a hatred of life. Or if at any time a relaxation takes place, in most cases hilarity supervenes. The individuals are dull or stern, dejected or unreasonably torpid…they also become peevish, dispirited and start up from a disturbed sleep.
—Arateus (from: Taylor and Fink 2006)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260
Andersen ML, Margis R, Frey BN et al (2009) Electrophysiological correlates of sleep disturbance induced by acute and chronic administration of D-amphetamine. Brain Res 1249:162–172. doi:10.1016/j.brainres.2008.10.023
Andretic R, Hirsh J (2000) Circadian modulation of DA receptor responsiveness in Drosophila melanogaster. Proc Natl Acad Sci 97:1873–1878. doi:10.1073/pnas.97.4.1873
Anisman H, Irwin J, Sklar LS (1979) Deficits of escape performance following catecholamine depletion: implications for behavioral deficits induced by uncontrollable stress. Psychopharmacology 64:163–170
Armitage R, Arnulf I, Leu S et al (2007) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. Sleep Med Rev 10:157–163
Arranz B, Blennow K, Eriksson A et al (1997) Serotonergic, noradrenergic, and DAergic measures in suicide brains. Biol Psychiatry 41:1000–1009 S0006322396002399 [pii]
Asberg M, Bertilsson L, Martensson B et al (1984) CSF monoamine metabolites in melancholia. Acta Psychiatr Scand 69:201–219
Ashkenazy-Frolinger T, Kronfeld-Schor N, Juetten J, Einat H (2010) It is darkness and not light: depression-like behaviors of diurnal unstriped Nile grass rats maintained under a short photoperiod schedule. J Neurosci Methods 186:165–170. doi:10.1016/j.jneumeth.2009.11.013
Baglioni C, Battagliese G, Feige B et al (2011) Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord 135:10–19
Bannon MJ, Wolf ME, Roth RH (1983) Pharmacology of DA neurons innervating the prefrontal, cingulate and piriform cortices. Eur J Pharmacol 92:119–125. doi:10.1016/0014-2999(83)90116-4
Barandas R, Landgraf D, McCarthy MJ, Welsh DK (2015) Circadian clocks as modulators of metabolic comorbidity in psychiatric disorders. Curr Psychiatry Rep 17:92–98. doi:10.1007/s11920-015-0637-2
Barclay JL, Husse J, Bode B et al (2012) Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7:e37150. doi:10.1371/journal.pone.0037150
Barger LK, Lockley SW, Rajaratnam SMW, Landrigan CP (2009) Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions. Curr Neurol Neurosci Rep 9:155–164
Baron KG, Reid KJ (2014) Circadian misalignment and health. Int Rev Psychiatry 26:139–154. doi:10.3109/09540261.2014.911149
Basso AM, Gallagher KB, Bratcher NA et al (2005) Antidepressant-like effect of D(2/3) receptor-, but not D(4) receptor-activation in the rat forced swim test. Neuropsychopharmacology 30:1257–1268 1300677 [pii]
Baumann CR, Bassetti CL (2005) Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol 4:673–682
Bell-Pedersen D, Cassone VM, Earnest DJ et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556. doi:10.1038/nrg1633
Benson B (1987) Temporal changes in medial basal hypothalamic catecholamines in male Syrian hamsters exposed to short photoperiod. Exp Brain Res 65:371–376
Berridge KC (2007) The debate over DA’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431. doi:10.1007/s00213-006-0578-x
Besharse JC, Zhuang M, Freeman K, Fogerty J (2004) Regulation of photoreceptor Per1 and Per2 by light, DA and a circadian clock. Eur J Neurosci 20:167–174. doi:10.1111/j.1460-9568.2004.03479.x
Bowden C, Cheetham SC, Lowther S et al (1997a) Reduced DA turnover in the basal ganglia of depressed suicides. Brain Res 769:135–140 S0006-8993(97)00692-6 [pii]
Bowden C, Cheetham SC, Lowther S et al (1997b) DA uptake sites, labelled with [3H]GBR12935, in brain samples from depressed suicides and controls. Eur Neuropsychopharmacol 7:247–252 S0924977X97004239 [pii]
Bowden C, Theodorou AE, Cheetham SC et al (1997c) DA D1 and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res 752:227–233
Cahill GM, Besharse JC (1991) Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 DA receptors. J Neurosci 11:2959–2971
Cappuccio FP, D’Elia L, Strazzullo P, Miller MA (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33:585–592
Cirelli C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10:549–560. doi:10.1038/nrn2683
Cirelli C, Tononi G (2008) Is sleep essential? PLoS Biol 6:e216
Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264
Da Cunha C, Gomez-A A, Blaha CD (2012) The role of the basal ganglia in motivated behavior. Rev Neurosci 23:747–767. doi:10.1515/revneuro-2012-0063
Dahan L, Astier B, Vautrelle N et al (2007) Prominent burst firing of DAergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241 1301251 [pii]
Deats SP, Adidharma W, Yan L (2015) Hypothalamic DAergic neurons in an animal model of seasonal affective disorder. Neurosci Lett 602:17–21. doi:10.1016/j.neulet.2015.06.038
Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77. doi:10.1016/j.tins.2011.11.005
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. doi:10.1146/annurev-physiol-021909-135821
Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15:991–1002
Duffy A, Jones S, Goodday S, Bentall R (2015) Candidate risks indicators for bipolar disorder: early intervention opportunities in high-risk youth. Int J Neuropsychopharmacol pyv071. doi:10.1093/ijnp/pyv071
Duncan WC, Sarasso S, Ferrarelli F et al (2013) Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 16:301–311. doi:10.1017/S1461145712000545
Eidelman P, Talbot LS, Gruber J et al (2010) Sleep architecture as correlate and predictor of symptoms and impairment in inter-episode bipolar disorder: taking on the challenge of medication effects. J Sleep Res 19:516–524. doi:10.1111/j.1365-2869.2010.00826.x
Einat H, Kronfeld-Schor N, Eilam D (2006) Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res 173:153–157. doi:10.1016/j.bbr.2006.06.006
Eisenberg DP, Kohn PD, Baller EB et al (2010) Seasonal effects on human striatal presynaptic DA synthesis. J Neurosci 30:14691–14694. doi:10.1523/JNEUROSCI.1953-10.2010
Emens J, Lewy A, Kinzie JM et al (2009) Circadian misalignment in major depressive disorder. Psychiatry Res 168:259–261. doi:10.1016/j.psychres.2009.04.009
Eppinger B, Hammerer D, Li SC (2011) Neuromodulation of reward-based learning and decision making in human aging. Ann NY Acad Sci 1235:1–17. doi:10.1111/j.1749-6632.2011.06230.x
Faulkner P, Deakin JFW (2014) The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 46:365–378
Feenstra MGP, Botterblom MHA, Mastenbroek S (2000) DA and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100:741–748. doi:10.1016/S0306-4522(00)00319-5
Felten A, Montag C, Markett S et al (2011) Genetically determined DA availability predicts disposition for depression. Brain Behav 1:109–118. doi:10.1002/brb3.20
Finan PH, Smith MT (2013) The comorbidity of insomnia, chronic pain, and depression: DA as a putative mechanism. Sleep Med Rev 17:173–183
Floresco SB, West AR, Ash B et al (2003) Afferent modulation of DA neuron firing differentially regulates tonic and phasic DA transmission. Nat Neurosci 6:968–973. doi:10.1038/nn1103
Forbes EE, Dahl RE (2012) Research review: altered reward function in adolescent depression: what, when and how? J Child Psychol Psychiatry Allied Discip 53:3–15
Forbes EE, Shaw DS, Dahl RE (2007) Alterations in reward-related decision making in boys with recent and future depression. Biol Psychiatry 61:633–639. doi:10.1016/j.biopsych.2006.05.026
Giles DE, Jarrett RB, Rush AJ et al (1993) Prospective assessment of electroencephalographic sleep in remitted major depression. Psychiatry Res 46:269–284
Gillin JC, Salin-Pascual R, Velazquez-Moctezuma J et al (1993) Cholinergic receptor subtypes and REM sleep in animals and normal controls. Prog Brain Res 98:379–387
Goda R, Otsuka T, Iwamoto A et al (2015) Serotonin levels in the dorsal raphe nuclei of both chipmunks and mice are enhanced by long photoperiod, but brain DA level response to photoperiod is species-specific. Neurosci Lett 593:95–100. doi:10.1016/j.neulet.2015.03.035
Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102. doi:10.1152/physrev.00009.2009
Gotlib IH, Hamilton JP, Cooney RE et al (2010) Neural processing of reward and loss in girls at risk for major depression. Arch Gen Psychiatry 67:380–387. doi:10.1001/archgenpsychiatry.2010.13
Haber SN, Knutson B (2009) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26
Hasegawa M, Cahill GM (1999) A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by DA but not by light. J Neurochem 72:1812–1820
Hasler BP, Troxel WM (2010) Couples’ nighttime sleep efficiency and concordance: evidence for bidirectional associations with daytime relationship functioning. Psychosom Med 72:794–801. doi:10.1097/PSY.0b013e3181ecd08a
Hasler BP, Sitnick SL, Shaw DS, Forbes EE (2013) An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry Res 214:357–364. doi:10.1016/j.pscychresns.2013.08.005
Hasler BP, Buysse DJ, Germain A (2015) Shifts Toward morningness during behavioral sleep interventions are associated with improvements in depression, positive affect, and sleep quality. Behav Sleep Med 1–12. doi:10.1080/15402002.2015.1048452
Heshmati M, Russo SJ (2015) Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci reports 2:146–153. doi:10.1007/s40473-015-0044-3
Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23:1–21. doi:10.1037/a0038550
Hirsh J, Riemensperger T, Coulom H et al (2010) Roles of DA in circadian rhythmicity and extreme light sensitivity of circadian entrainment. Curr Biol 20:209–214. doi:10.1016/j.cub.2009.11.037
Hoevenaar-Blom MP, Spijkerman AM, Kromhout D et al (2011) Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep 34:1487–1492. doi:10.5665/sleep.1382
Hunsley MS, Palmiter RD (2003) Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep 26:521–526
Imbesi M, Yildiz S, Dirim Arslan A et al (2009) DA receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience 158:537–544. doi:10.1016/j.neuroscience.2008.10.044
Isaac SO, Berridge CW (2003) Wake-promoting actions of DA D1 and D2 receptor stimulation. J Pharmacol Exp Ther 307:386–394. doi:10.1124/jpet.103.053918
Jackson A, Cavanagh J, Scott J (2003) A systematic review of manic and depressive prodromes. J Affect Disord 74:209–217
Jindal RD, Thase ME (2004) Treatment of insomnia associated with clinical depression. Sleep Med Rev 8:19–30. doi:10.1016/S1087-0792(03)00025-X
Kaplan KA, McGlinchey EL, Soehner A et al (2014) Hypersomnia subtypes, sleep and relapse in bipolar disorder. Psychol Med 45:1751–1763
Klimek V, Schenck JE, Han H et al (2002) DAergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry 52:740–748 S0006322302013835 [pii]
Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain DA system. Neuropharmacology 76(Pt B):351–359. doi:10.1016/j.neuropharm.2013.03.019
Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB (2007) The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci 9:333–342
Landgraf D, McCarthy MJ, Welsh DK (2014) Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep 16:483. doi:10.1007/s11920-014-0483-7
Léna I, Parrot S, Deschaux O et al (2005) Variations in extracellular levels of DA, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899. doi:10.1002/jnr.20602
Lion JR, Millan C, Taylor RJ (1975) Reserpine and the induction of depression: a case report. Dis Nerv Syst 36:321–322
Lu J, Jhou TC, Saper CB (2006) Identification of wake-active DAergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202. doi:10.1523/JNEUROSCI.2244-05.2006
Machado-Vieira R, Henter ID, Zarate CA (2015) New targets for rapid antidepressant action. Prog Neurobiol. doi:10.1016/j.pneurobio.2015.12.001
Manglick M, Rajaratnam SM, Taffe J et al (2013) Persistent sleep disturbance is associated with treatment response in adolescents with depression. Aust NZ J Psychiatry 47:556–563
Maret S, Dorsaz S, Gurcel L et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104:20090–20095. doi:10.1073/pnas.0710131104
Mathe AA (1999) Neuropeptides and electroconvulsive treatment. J ECT 15:60–75
McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232. doi:10.1016/j.pharmthera.2007.02.003
Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to DAergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927
Monti JM, Monti D (2007) The involvement of DA in the modulation of sleep and waking. Sleep Med Rev 11:113–133. doi:10.1016/j.smrv.2006.08.003
Monti JM, Jantos H, Fernández M (1989) Effects of the selective DA D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Eur J Pharmacol 169:61–66
Monti JM, Fernández M, Jantos H (1990) Sleep during acute DA D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Neuropsychopharmacology 3:153–162
Morgan JK, Olino TM, McMakin DL et al (2013) Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiol Dis 52:66–74. doi:10.1016/j.nbd.2012.03.039
Mukherjee S, Coque L, Cao J-L et al (2010) Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511. doi:10.1016/j.biopsych.2010.04.031
Narita M, Nagumo Y, Hashimoto S et al (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic DA pathway and related behaviors induced by morphine. J Neurosci 26:398–405. doi:10.1523/JNEUROSCI.2761-05.2006
Nestler EJ, Carlezon WA (2006) The mesolimbic DA reward circuit in depression. Biol Psychiatry 59:1151–1159
Ng TH, Chung KF, Ho FYY et al (2015) Sleep-wake disturbance in interepisode bipolar disorder and high-risk individuals: a systematic review and meta-analysis. Sleep Med Rev 20:46–58
Nierenberg AA, Husain MM, Trivedi MH et al (2010) Residual symptoms after remission of major depressive disorder with citalopram and risk of relapse: a STAR*D report. Psychol Med 40:41–50. doi:10.1017/S0033291709006011
Nikisch G, Mathe AA (2008) CSF monoamine metabolites and neuropeptides in depressed patients before and after electroconvulsive therapy. Eur Psychiatry 23:356–359. doi:10.1016/j.eurpsy.2008.03.003
Nofzinger EA, Boysse DJ, Germain A et al (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161:2126–2129. doi:10.1176/appi.ajp.161.11.2126
Nurnberger JI Jr, Berrettini W, Tamarkin L et al (1988) Supersensitivity to melatonin suppression by light in young people at high risk for affective disorder. A preliminary report. Neuropsychopharmacology 1:217–223
Nutt DJ, Wilson S, Paterson L (2008) Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 10:329–336
Ohayon MM, Roth T (2003) Place of chronic insomnia in the course of depressive and anxiety disorders. J Psychiatr Res 37:9–15. doi:10.1016/S0022-3956(02)00052-3
Olive MF, Seidel WF, Edgar DM (1998) Compensatory sleep responses to wakefulness induced by the DA autoreceptor antagonist (-)DS121. J Pharmacol Exp Ther 285:1073–1083
Pare CM, Yeung DP, Price K, Stacey RS (1969) 5-Hydroxytryptamine, noradrenaline, and DA in brainstem, hypothalamus, and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning. Lancet (London, England) 2:133–135. doi:S0140-6736(69)92442-8 [pii]
Paykel E (2008) Partial remission, residual symptoms, and relapse in depression. Dialogues Clin Neurosci 10:431–437
Perlis ML, Giles DE, Buysse DJ et al (1997) Self-reported sleep disturbance as a prodromal symptom in recurrent depression. J Affect Disord 42:209–212
Perona MTG, Waters S, Hall FS et al (2008) Animal models of depression in DA, serotonin, and norepinephrine transporter knockout mice: prominent effects of DA transporter deletions. Behav Pharmacol 19:566–574. doi:10.1097/FBP.0b013e32830cd80f
Pizzagalli DA, Iosifescu D, Hallett LA et al (2008) Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res 43:76–87. doi:10.1016/j.jpsychires.2008.03.001
Plante DT, Winkelman JW (2008) Sleep disturbance in bipolar disorder: therapeutic implications. Am J Psychiatry 165:830–843
Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146–1152. doi:10.1038/nn.3779
Python A, De Saint Hilaire Z, Gaillard JM (1996) Effects of a D2 receptor agonist RO 41-9067 alone and with clonidine on sleep parameters in the rat. Pharmacol Biochem Behav 53:291–296. doi:10.1016/0091-3057(95)02023-3
Ritter PS, Marx C, Lewtschenko N et al (2012) The characteristics of sleep in patients with manifest bipolar disorder, subjects at high risk of developing the disease and healthy controls. J Neural Transm 119:1173–1184. doi:10.1007/s00702-012-0883-y
Roybal K (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411
Rudorfer MV, Manji HK, Potter WZ (1991a) Bupropion, ECT, and DAergic overdrive. Am J Psychiatry 148:1101–1102
Rudorfer MV, Risby ED, Osman OT et al (1991b) Hypothalamic–pituitary–adrenal axis and monoamine transmitter activity in depression: a pilot study of central and peripheral effects of electroconvulsive therapy. Biol Psychiatry 29:253–264 0006-3223(91)91287-2 [pii]
Sachar EJ (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 28:19. doi:10.1001/archpsyc.1973.01750310011002
Sanacora G, Zarate CA, Krystal JH et al (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437
Schultz W (2013) Updating DA reward signals. Curr Opin Neurobiol 23:229–238
Schwartz JRL, Roth T (2008) Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 6:367–378 CN-6-367 [pii]
Shang Y, Haynes P, Pírez N et al (2011) Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of DA. Nat Neurosci 14:889–895. doi:10.1038/nn.2860
Sharp C, Kim S, Herman L et al (2014) Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression. J Abnorm Psychol 123:298–309. doi:10.1037/a0036191
Sidor MM, Spencer SM, Dzirasa K et al (2015) Daytime spikes in DAergic activity drive rapid mood-cycling in mice. Mol Psychiatry 20:1406–1419. doi:10.1038/mp.2014.167
Smith AD, Olson RJ, Justice JB (1992) Quantitative microdialysis of DA in the striatum: effect of circadian variation. J Neurosci Methods 44:33–41. doi:10.1016/0165-0270(92)90111-P
Smith MT, Huang MI, Manber R (2005) Cognitive behavior therapy for chronic insomnia occurring within the context of medical and psychiatric disorders. Clin Psychol Rev 25:559–592
Sollars PJ, Pickard GE (2015) The neurobiology of circadian rhythms. Psychiatr Clin North Am 38:645–665. doi:10.1016/j.psc.2015.07.003
Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and DA. J Neurosci 20:8572–8577
Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Response of DAergic neurons in cat to auditory stimuli presented across the sleep-waking cycle. Brain Res 277:150–154. doi:10.1016/0006-8993(83)90917-4
Sutton EL (2014) Psychiatric disorders and sleep issues. Med Clin North Am 98:1123–1143. doi:10.1016/j.mcna.2014.06.009
Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775
Taylor MA, Fink M (2006) Melancholia: the diagnosis, pathophysiology, and treatment of depressive illness. Cambridge University Press, Cambridge
Thase ME, Fasiczka AL, Berman SR et al (1998) Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression. Arch Gen Psychiatry 55:138. doi:10.1001/archpsyc.55.2.138
Trampus M, Conti A, Marzanatti M et al (1990) Effects of the enkephalinase inhibitor SCH 34826 on the sleep-waking cycle and EEG activity in the rat. Neuropharmacology 29:199–205
Traskman L, Asberg M, Bertilsson L, Sjostrand L (1981) Monoamine metabolites in CSF and suicidal behavior. Arch Gen Psychiatry 38:631–636
Treadway MT, Zald DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 35:537–555
Tremblay LK, Naranjo CA, Graham SJ et al (2005) Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a DAergic probe. Arch Gen Psychiatry 62:1228–1236. doi:10.1001/archpsyc.62.11.1228
Trulson ME (1985) Simultaneous recording of substantia nigra neurons and voltammetric release of DA in the caudate of behaving cats. Brain Res Bull 15:221–223
Trulson ME, Preussler DW (1984) DA-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83:367–377. doi:10.1016/S0014-4886(84)90105-5
Trulson ME, Preussler DW, Howell GA (1981) Activity of substantia nigra units across the sleep-waking cycle in freely moving cats. Neurosci Lett 26:183–188. doi:10.1016/0304-3940(81)90346-3
Tsuno N, Besset A, Ritchie K (2005) Sleep and depression. J Clin Psychiatry 66:1254–1269
Ueda HR (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539
Uher R, Dernovsek MZ, Mors O et al (2011) Melancholic, atypical and anxious depression subtypes and outcome of treatment with escitalopram and nortriptyline. J Affect Disord 132:112–120. doi:10.1016/j.jad.2011.02.014
Vallone D, Picetti R, Borrelli E (2000) Structure and function of DA receptors. Neurosci Biobehav Rev 24:125–132. doi:10.1016/S0149-7634(99)00063-9
Vanderwolf CH (1988) Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int Rev Neurobiol 30:225–340
Vosko AM, Colwell CS, Avidan AY (2010) Jet lag syndrome: circadian organization, pathophysiology, and management strategies. Nat Sci Sleep 2:187–198. doi:10.2147/NSS.S6683
Vrieze E, Ceccarini J, Pizzagalli DA et al (2013a) Measuring extrastriatal DA release during a reward learning task. Hum Brain Mapp 34:575–586. doi:10.1002/hbm.21456
Vrieze E, Pizzagalli DA, Demyttenaere K et al (2013b) Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry 73:639–645. doi:10.1016/j.biopsych.2012.10.014
Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577. doi:10.1146/annurev-physiol-021909-135919
Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28:7–12. doi:10.1097/YCO.0000000000000122
Wirz-Justice A (2008) Diurnal variation of depressive symptoms. Dialogues Clin Neurosci 10:337–343
Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453
Wise RA (2008) DA and reward: the anhedonia hypothesis 30 years on. Neurotox Res 14:169–183. doi:10.1007/BF03033808
Wisor JP, Nishino S, Sora I et al (2001) DAergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794
Workman JL, Manny N, Walton JC, Nelson RJ (2011) Short day lengths alter stress and depressive-like responses, and hippocampal morphology in Siberian hamsters. Horm Behav 60:520–528. doi:10.1016/j.yhbeh.2011.07.021
Wright KP, Lowry CA, LeBourgeois MK (2012) Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 5:1–12. doi:10.3389/fnmol.2012.00050
Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599. doi:10.1038/nrn2868
Yaggi HK, Araujo AB, McKinlay JB (2006) Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 29:657–661 29/3/657 [pii]
Yates WR, Mitchell J, John Rush A et al (2007) Clinical features of depression in outpatients with and without co-occurring general medical conditions in STAR*D: confirmatory analysis. Prim Care Companion J Clin Psychiatry 9:7–15
Zheng B, Larkin DW, Albrecht U et al (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173. doi:10.1038/22118
Zuurbier LA, Luik AI, Hofman A et al (2015) Fragmentation and stability of circadian activity rhythms predict mortality: the Rotterdam study. Am J Epidemiol 181:54–63. doi:10.1093/aje/kwu245
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Speed, T.J., Finan, P.H. (2016). Depression, Sleep Disorders, and DA. In: Monti, J., Pandi-Perumal, S., Chokroverty, S. (eds) Dopamine and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-46437-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-46437-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46435-0
Online ISBN: 978-3-319-46437-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)