Skip to main content

Alteration of Biological Rhythms in Diseases of the Central Dopaminergic System: Focus on Parkinson’s Disease

  • Chapter
  • First Online:
Dopamine and Sleep

Abstract

Parkinson’s Disease (PD) is characterized by profound alterations of the circadian timing system, as evidenced by studies in animals and patients. Alterations in activity, temperature and heart rate rhythms have been observed in several animal models of PD. Deposition of alpha-synuclein in the hypothalamic suprachiasmatic nuclei (SCN) (i.e, the site of central oscillator) has been detected in transgenic mice and altered rhythms in clock genes have been reported in both the striatum and the SCN. Furthermore, enucleation of the lateral hypothalamus, leading to “functional blindness” aggravated parkinsonian symptoms in one PD animal model. Disturbances in biological rhythms have also been observed in PD patients. Of note, polymorphisms of the ARNTL and PER1 clock genes were more frequent in PD patients compared to controls. Together with the extensive cross-talk between the basal ganglia and SCN, these pieces of evidence suggest that disturbances in the circadian timing system might be part of the core features of PD and not just a “collateral damage”. According to this view, a disturbed clockwork might actively contribute to neurodegeneration and a chronotherapeutic approach to PD might be considered. Melatonin, as a prototype chronobiotic agent, has been shown to have some efficacy for sleep disorder treatment in PD and exhibit neuroprotection in animal models of PD. Bright light has also been effective for depression and insomnia in PD patients. Novel chronobiological therapies might have a great impact on the clinical management of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam CR, Shrier E, Ding Y et al (2013) Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 33:137–142

    Article  PubMed  Google Scholar 

  • Adi N, Mash DC, Ali Y et al (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:BR61–67

    Google Scholar 

  • Almeida L, Loureiro AI, Vaz-Da-Silva M et al (2010) Chronopharmacology of nebicapone, a new catechol-O-methyltransferase inhibitor. Curr Med Res Opin 26:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Aziz NA, Pijl H, Frolich M et al (2011a) Diurnal secretion profiles of growth hormone, thyrotrophin and prolactin in Parkinson’s disease. J Neuroendocrinol 23:519–524

    Article  CAS  PubMed  Google Scholar 

  • Aziz NA, Pijl H, Frolich M et al (2011b) Leptin, adiponectin, and resistin secretion and diurnal rhythmicity are unaltered in Parkinson’s disease. Mov Disord 26:760–761

    Article  PubMed  Google Scholar 

  • Barcia C, De Pablos V, Bautista-Hernandez V et al (2004) Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity. J Neurosci Methods 134:59–64

    Article  CAS  PubMed  Google Scholar 

  • Ben V, Bruguerolle B (2000) Effects of bilateral striatal 6-OHDA lesions on circadian rhythms in the rat: a radiotelemetric study. Life Sci 67:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Berganzo K, Diez-Arrola B, Tijero B et al (2013) Nocturnal hypertension and dysautonomia in patients with Parkinson’s disease: are they related? J Neurol 260:1752–1756

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1998) The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord 4:59–60

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Phani S, Jackson-Lewis V et al (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolitho SJ, Naismith SL, Rajaratnam SM et al (2014) Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med 15:342–347

    Article  CAS  PubMed  Google Scholar 

  • Bonuccelli U, Del Dotto P, Lucetti C et al (2000) Diurnal motor variations to repeated doses of levodopa in Parkinson’s disease. Clin Neuropharmacol 23:28–33

    Article  CAS  PubMed  Google Scholar 

  • Boulamery A, Simon N, Vidal J et al (2010) Effects of L-dopa on circadian rhythms of 6-OHDA striatal lesioned rats: a radiotelemetric study. Chronobiol Int 27:251–264

    Article  CAS  PubMed  Google Scholar 

  • Breen DP, Vuono R, Nawarathna U et al (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 71:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Liu S, Sothern RB et al (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 17:550–554

    Article  CAS  PubMed  Google Scholar 

  • Castaneda TR, De Prado BM, Prieto D et al (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36:177–185

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474

    Article  CAS  PubMed  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A et al (2006) α-synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabbeni-Sala F, Di Santo S, Franceschini D et al (2001) Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 15:164–170

    Article  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Liu S, Yuan Y et al (2011) Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett 499:186–188

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg DP, Kohn PD, Baller EB et al (2010) Seasonal effects on human striatal presynaptic dopamine synthesis. J Neurosci 30:14691–14694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejaz AA, Sekhon IS, Munjal S (2006) Characteristic findings on 24-h ambulatory blood pressure monitoring in a series of patients with Parkinson’s disease. Eur J Intern Med 17:417–420

    Article  PubMed  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F et al (2007) Levodopa-induced dyskinesias. Mov Disord 22:1379–1389 (quiz 1523)

    Google Scholar 

  • Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord 23(Suppl 3):S497–S508

    Article  PubMed  Google Scholar 

  • Fertl E, Auff E, Doppelbauer A et al (1991) Circadian secretion pattern of melatonin in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 3:41–47

    Article  CAS  PubMed  Google Scholar 

  • Fertl E, Auff E, Doppelbauer A et al (1993) Circadian secretion pattern of melatonin in de novo parkinsonian patients: evidence for phase-shifting properties of l-dopa. J Neural Transm Park Dis Dement Sect 5:227–234

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Cooper HM (2014) Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson’s disease. Neurobiol Dis 71:359–369

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Dkhissi-Benyahya O, Cooper HM (2013) Lack of long-term changes in circadian, locomotor, and cognitive functions in acute and chronic MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse models of Parkinson’s disease. Chronobiol Int 30:741–755

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Vezoli J, Dzahini K et al (2014) Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS ONE 9:e86240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Reitbock P, Anichtchik O, Bellucci A et al (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133:2032–2044

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman JG, Postuma R (2014) Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol 27:434–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2:669–676

    Article  PubMed  Google Scholar 

  • Goldstein DS, Holmes CS, Dendi R et al (2002) Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 58:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Article  CAS  PubMed  Google Scholar 

  • Grace AA (2008) Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov Disord 23(Suppl 3):S560–S569

    Article  PubMed  Google Scholar 

  • Gravotta L, Gavrila AM, Hood S et al (2011) Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J Mol Neurosci 45:162–171

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Wang B, Zhang YB et al (2015) Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci Rep 5:15891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardeland R, Cardinali DP, Brown GM et al (2015) Melatonin and brain inflammaging. Prog Neurobiol 127–128:46–63

    Article  PubMed  CAS  Google Scholar 

  • Harms E, Kivimae S, Young MW et al (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19:361–373

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Veldhuis JD, Deuschle M et al (1997) Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18:285–289

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Matsunaga N, Okazaki H et al (2013) A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson’s disease. Neuromolecular Med 15:238–251

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249

    Article  CAS  PubMed  Google Scholar 

  • Hineno T, Mizobuchi M, Hiratani K et al (1992) Disappearance of circadian rhythms in Parkinson’s disease model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in dogs. Brain Res 580:92–99

    Article  CAS  PubMed  Google Scholar 

  • Hood S, Cassidy P, Cossette MP et al (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci 30:14046–14058

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    CAS  PubMed  Google Scholar 

  • Kaasinen V, Jokinen P, Joutsa J et al (2012) Seasonality of striatal dopamine synthesis capacity in Parkinson’s disease. Neurosci Lett 530:80–84

    Article  CAS  PubMed  Google Scholar 

  • Khaldy H, Leon J, Escames G et al (2002) Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology 75:201–208

    Article  CAS  PubMed  Google Scholar 

  • Khaldy H, Escames G, Leon J et al (2003) Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion. Neurobiol Aging 24:491–500

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Loh DH, Truong D et al (2011) Circadian dysfunction in a mouse model of Parkinson’s disease. Exp Neurol 232:66–75

    Article  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Lax P, Esquiva G, Esteve-Rudd J et al (2012) Circadian dysfunction in a rotenone-induced parkinsonian rodent model. Chronobiol Int 29:147–156

    Article  CAS  PubMed  Google Scholar 

  • Leng A, Mura A, Hengerer B et al (2004) Effects of blocking the dopamine biosynthesis and of neurotoxic dopamine depletion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on voluntary wheel running in mice. Behav Brain Res 154:375–383

    Article  CAS  PubMed  Google Scholar 

  • Lim SY, Fox SH, Lang AE (2009) Overview of the extranigral aspects of Parkinson disease. Arch Neurol 66:167–172

    PubMed  Google Scholar 

  • Mattam U, Jagota A (2015) Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16:109–123

    Article  CAS  PubMed  Google Scholar 

  • Mendoza J, Challet E (2014) Circadian insights into dopamine mechanisms. Neuroscience 282c:230–242

    Article  CAS  Google Scholar 

  • Mercado G, Valdes P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19:165–175

    Article  CAS  PubMed  Google Scholar 

  • Milanese C, Sager JJ, Bai Q et al (2012) Hypokinesia and reduced dopamine levels in zebrafish lacking beta- and gamma1-synucleins. J Biol Chem 287:2971–2983

    Article  CAS  PubMed  Google Scholar 

  • Monge A, Viselli F, Stocchi F et al (2004) Variation in the dopaminergic response during the day in Parkinson disease. Clin Neuropharmacol 27:116–118

    Article  PubMed  Google Scholar 

  • Naskar A, Prabhakar V, Singh R et al (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 58:262–274

    Article  CAS  PubMed  Google Scholar 

  • Niwa F, Kuriyama N, Nakagawa M et al (2011) Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson’s disease. Auton Neurosci 165:195–200

    Article  PubMed  Google Scholar 

  • Nutt JG (2001) Motor fluctuations and dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 8:101–108

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG (2008) Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord 23(Suppl 3):S580–S584

    Article  PubMed  Google Scholar 

  • Nyholm D, Lennernas H, Johansson A et al (2010) Circadian rhythmicity in levodopa pharmacokinetics in patients with Parkinson disease. Clin Neuropharmacol 33:181–185

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Marin C, Rodriguez-Oroz C et al (2008) The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol 64(Suppl 2):S30–S46

    PubMed  Google Scholar 

  • Oh YS, Kim JS, Yang DW et al (2013) Nighttime blood pressure and white matter hyperintensities in patients with Parkinson disease. Chronobiol Int 30:811–817

    Article  PubMed  Google Scholar 

  • Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223–236

    Article  PubMed  Google Scholar 

  • Paus S, Schmitz-Hubsch T, Wullner U et al (2007) Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord 22:1495–1498

    Article  PubMed  Google Scholar 

  • Perez-Lloret S, Rossi M, Cardinali DP et al (2010) Activity-rest rhythm abnormalities in Parkinson’s disease patients are related to dopaminergic therapy. Int J Neurosci 120:11–16

    Article  PubMed  Google Scholar 

  • Pierangeli G, Provini F, Maltoni P et al (2001) Nocturnal body core temperature falls in Parkinson’s disease but not in multiple-system atrophy. Mov Disord 16:226–232

    Article  CAS  PubMed  Google Scholar 

  • Plaschke M, Trenkwalder P, Dahlheim H et al (1998) Twenty-four-hour blood pressure profile and blood pressure responses to head-up tilt tests in Parkinson’s disease and multiple system atrophy. J Hypertens 16:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Poceta JS, Parsons L, Engelland S et al (2009) Circadian rhythm of CSF monoamines and hypocretin-1 in restless legs syndrome and Parkinson’s disease. Sleep Med 10:129–133

    Article  PubMed  Google Scholar 

  • Pringsheim T, Jette N, Frolkis A et al (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590

    Article  PubMed  Google Scholar 

  • Pursiainen V, Haapaniemi TH, Korpelainen JT et al (2002) Circadian heart rate variability in Parkinson’s disease. J Neurol 249:1535–1540

    Article  PubMed  Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2010) Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 8:194–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeo S, Viaggi C, Di Camillo D et al (2013) Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson’s disease epidemiology. Sci Rep 3:1395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romeo S, Di Camillo D, Splendiani A et al (2014) Eyes as gateways for environmental light to the substantia nigra: relevance in Parkinson’s disease. Sci World J 2014:317879

    Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Hofman MA, Van Wamelen DJ et al (2012) Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep 35:713–715

    PubMed  PubMed Central  Google Scholar 

  • Simon N, Mouchet J, Bruguerolle B (2000) Effects of a seven-day continuous infusion of L-DOPA on daily rhythms in the rat. Eur J Pharmacol 401:79–83

    Article  CAS  PubMed  Google Scholar 

  • Slack K, Billing R, Matthews S et al (2010) Subtle cardiovascular dysfunction in the unilateral 6-hydroxydopamine-lesioned rat. Parkinsons Dis 2010:427810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan V, Cardinali DP, Srinivasan US et al (2011) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 4:297–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struck LK, Rodnitzky RL, Dobson JK (1990) Circadian fluctuations of contrast sensitivity in Parkinson’s disease. Neurology 40:467–470

    Article  CAS  PubMed  Google Scholar 

  • Stuebner E, Vichayanrat E, Low DA et al (2013) Twenty-four hour non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson’s disease. Front Neurol 4:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuebner E, Vichayanrat E, Low DA et al (2015) Non-dipping nocturnal blood pressure and psychosis parameters in Parkinson disease. Clin Auton Res 25:109–116

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Miyamoto T, Miyamoto M et al (2007) Circadian variation of core body temperature in Parkinson disease patients with depression: a potential biological marker for depression in Parkinson disease. Neuropsychobiology 56:172–179

    Article  PubMed  Google Scholar 

  • Tapias V, Escames G, Lopez LC et al (2009) Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 87:3002–3010

    Article  CAS  PubMed  Google Scholar 

  • Tapias V, Cannon JR, Greenamyre JT (2010) Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model. J Neurosci Res 88:420–427

    Article  CAS  PubMed  Google Scholar 

  • Tolson D, Fleming V, Schartau E (2002) Coping with menstruation: understanding the needs of women with Parkinson’s disease. J Adv Nurs 40:513–521

    Article  PubMed  Google Scholar 

  • Vetrano DL, Pisciotta MS, Lo Monaco MR et al (2015) Association of depressive symptoms with circadian blood pressure alterations in Parkinson’s disease. J Neurol 262:2564–2571

    Article  CAS  PubMed  Google Scholar 

  • Videnovic A, Golombek D (2013) Circadian and sleep disorders in Parkinson’s disease. Exp Neurol 243:45–56

    Article  PubMed  Google Scholar 

  • Videnovic A, Willis GL (2016) Circadian system—a novel diagnostic and therapeutic target in Parkinson’s disease? Mov Disord

    Google Scholar 

  • Videnovic A, Noble C, Reid KJ et al (2014) Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 71:463–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Viyoch J, Matsunaga N, Yoshida M et al (2005) Effect of haloperidol on mPer1 gene expression in mouse suprachiasmatic nuclei. J Biol Chem 280:6309–6315

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Lauterburg T, Tobler I et al (2004) Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358:17–20

    Article  CAS  PubMed  Google Scholar 

  • Whitehead DL, Davies AD, Playfer JR et al (2008) Circadian rest-activity rhythm is altered in Parkinson’s disease patients with hallucinations. Mov Disord 23:1137–1145

    Article  PubMed  Google Scholar 

  • Wichmann T, Delong MR (2007) Anatomy and physiology of the basal ganglia: relevance to Parkinson’s disease and related disorders. Handb Clin Neurol 83:1–18

    Article  PubMed  Google Scholar 

  • Willis GL (2008) Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci 19:245–316

    Article  CAS  PubMed  Google Scholar 

  • Willis GL, Armstrong SM (1999) A therapeutic role for melatonin antagonism in experimental models of Parkinson’s disease. Physiol Behav 66:785–795

    Article  CAS  PubMed  Google Scholar 

  • Willis GL, Turner EJ (2007) Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 24:521–537

    Article  PubMed  Google Scholar 

  • Willis GL, Kelly AM, Kennedy GA (2008) Compromised circadian function in Parkinson’s disease: enucleation augments disease severity in the unilateral model. Behav Brain Res 193:37–47

    Article  CAS  PubMed  Google Scholar 

  • Willis GL, Moore C, Armstrong SM (2012) A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev Neurosci 23:199–226

    CAS  PubMed  Google Scholar 

  • Willis GL, Moore C, Armstrong SM (2014) Parkinson’s disease, lights and melanocytes: looking beyond the retina. Sci Rep 4:3921

    Article  PubMed  CAS  Google Scholar 

  • Willison LD, Kudo T, Loh DH et al (2013) Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson’s disease: insights from a transgenic mouse model. Exp Neurol 243:57–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Chen XY, Su SW et al (2016) Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials. Neurol Sci 37:57–65

    Article  PubMed  Google Scholar 

  • Zhong G, Bolitho S, Grunstein R et al (2013) The relationship between thermoregulation and REM sleep behaviour disorder in Parkinson’s disease. PLoS ONE 8:e72661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zisapel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21:605–616

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Perez-Lloret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perez-Lloret, S., Acuña-Castroviejo, D., Demaria-Pesce, V., Cardinali, D. (2016). Alteration of Biological Rhythms in Diseases of the Central Dopaminergic System: Focus on Parkinson’s Disease. In: Monti, J., Pandi-Perumal, S., Chokroverty, S. (eds) Dopamine and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-46437-4_6

Download citation

Publish with us

Policies and ethics