Skip to main content

Dopamine in REM Sleep Regulation

Abstract

The dopamine (DA)-ergic neurons are primarily localized in the substantia nigra (SN) and ventral tegmental area (VTA) of the brainstem. These neurons are involved in diverse functions including control of movements, reward, sleep-wakefulness and rapid eye movement sleep (REMS). Loss of these DA-ergic neurons is associated with different behavioral disorders, including Parkinson’s disease, depression, REMS behavior disorder (RBD) and notably in all these disorders sleep including REMS is affected. These neurons receive projections from the locus coeruleus (REM-OFF) and laterodorsal/pedunculopontinetegmentum (REM-ON), neurons, and these modulate REMS. However, how these DA-ergic neurons regulate REMS largely remains unknown. Relevant literatures suggest that the DA-ergic neurons may have an indirect modulatory role, which however needs confirmation.

Keyword

  • Dopamine
  • Dopamine receptors
  • Parkinson’s disease
  • REMS behavior disorder
  • Substantia nigra
  • Ventral tegmental area

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46437-4_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-46437-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Abbreviations

DA:

Dopamine

DAT:

DA uptake transporter

EEG:

Electroencephalogram

EMG:

Electromyogram

EOG:

Electrooculogram

LC:

Locus coeruleus

LDT:

Latero-dorsal tegementum

NA:

Noradrenaline

NREMS:

Non-REMS

PD:

Parkinson’s disease

PPT:

Pedunclo-pontinetegmentum

RBD:

REMS behavior disorder

REMS:

Rapid eye movement sleep

REMSD:

REMS deprivation

SN:

Substantia nigra

SNc:

SN pars compacta

SNr:

SN pars reticulata

VTA:

Ventral tegmental area

References

  • Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedeberg’s Arch Pharmacol 297:1–7

    CAS  CrossRef  Google Scholar 

  • Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136:570–577

    CAS  PubMed  CrossRef  Google Scholar 

  • Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. Movement Dis 2:166–230

    Google Scholar 

  • Argyropoulos SV, Wilson SJ (2005) Sleep disturbances in depression and the effects of antidepressants. Int Rev Psychiatr 17:237–245

    CrossRef  Google Scholar 

  • Armitage R (2007) Sleep and circadian rhythms in mood disorders. Acta Psychiatr Scand 115:104–115

    CrossRef  Google Scholar 

  • Arnaldi D, Latimer A, Leu-Semeneseu S, Vidailhet M, Arnulf I (2016) Loss of REM Sleep features acors snighttime in REM sleep behavior disorder. Sleep Med 17:134–137

    Google Scholar 

  • Arnulf I, Bonnet AM, Damier P, Bejjani BP, Seilhean D, Derenne JP, Agid Y (2000) Hallucinations, REM sleep, and Parkinson’s disease: a medical hypothesis. Neurology 55:281–288

    CAS  PubMed  CrossRef  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    CAS  PubMed  CrossRef  Google Scholar 

  • Bagetta G, Corasaniti M, Strongoli M, Sakurada S, Nistico G (1987) Behavioural and ECoG spectrum power effects after intraventricular injection of drugs altering dopaminergic transmission in rats. Neuropharmacology 26:1047–1052

    CAS  PubMed  CrossRef  Google Scholar 

  • Bagetta G, Sarro G, Priolo E, Nisticò G (1988) Ventral tegmental area: site through which dopamine D2-receptor agonists evoke behavioural and electrocortical sleep in rats. Br J Pharmacol 95:860–866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bayer VE, Pickel VM (1990) Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: relationship between immunolabeling density and neuronal associations. J Neurosci 10:2996–3013

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Benca RM, Okawa M, Uchiyama M, Ozaki S, Nakajima T, Shibui K, Obermeyer WH (1997) Sleep and mood disorders. Sleep Med Rev 1:45–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Bjorklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83:531–537

    CAS  PubMed  CrossRef  Google Scholar 

  • Bo P, Ongini E, Giorgetti A, Savoldi F (1988) Synchronization of the EEG and sedation induced by neuroleptics depend upon blockade of both D1 and D2 dopamine receptors. Neuropharmacology 27:799–805

    CAS  PubMed  CrossRef  Google Scholar 

  • Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, Benarroch EE, Ahlskog JE, Smith GE, Caselli RC, Tippman-Peikert M, Olson EJ, Lin SC, Young T, Wszolek Z, Schenck CH, Mahowald MW, Castillo PR, Del Tredici K, Braak H (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain J Neurol 130:2770–2788

    CAS  CrossRef  Google Scholar 

  • Brown A, Gershon S (1993) Dopamine and depression. J Neural Transm/Gen Sect JNT 91:75–109

    CAS  CrossRef  Google Scholar 

  • Brown EE, Damsma G, Gumming P, Fibiger HC (1991) Interstitial 3-methoxytyramine reflects striatal dopamine release: an in vivo microdialysis study. J Neurochem 57:701–707

    CAS  PubMed  CrossRef  Google Scholar 

  • Carlsson A (1987) Development of new pharmacological approaches in Parkinson’s disease. Adv Neurol 45:513–518

    CAS  PubMed  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–543

    CAS  PubMed  CrossRef  Google Scholar 

  • Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946

    CAS  PubMed  CrossRef  Google Scholar 

  • Chowdhury R, Guitart-Masip M, Bunzeck N, Dolan RJ, Düzel E (2012) Dopamine modulates episodic memory persistence in old age. J Neurosci 32:14193–14204

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cianchetti C, Masala C, Mangoni A, Gessa GL (1980) Suppression of REM and delta sleep by apomorphine in man: a dopamine mimetic effect. Psychopharmacology 67:61–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 33:281–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Cragg SJ, Greenfield SA (1997) Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum. J Neurosci 17:5738–5746

    CAS  PubMed  Google Scholar 

  • Cragg S, Rice M, Greenfield S (1997) Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum. J Neurophysiol 77:863–873

    CAS  PubMed  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241

    CAS  PubMed  CrossRef  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:231–255

    Google Scholar 

  • Datta S, Calvo JM, Quattrochi JJ, Hobson JA (1991) Long-term enhancement of REM sleep following cholinergic stimulation. NeuroReport 2:619–622

    CAS  PubMed  CrossRef  Google Scholar 

  • David Nutt D, Paterson L (2008) Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 10:329–336

    Google Scholar 

  • De Montis GM, Devoto P, Gessa GL, Meloni D, Porcella A, Saba P, Serra G, Tagliamonte A (1990) Central dopaminergic transmission is selectively increased in the limbic system of rats chronically exposed to antidepressants. Eur J Pharmacol 180:31–35

    PubMed  CrossRef  Google Scholar 

  • Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690

    CAS  PubMed  CrossRef  Google Scholar 

  • Denenberg VH, Kim DS, Palmiter RD (2004) The role of dopamine in learning, memory, and performance of a water escape task. Behav Brain Res 148:73–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Double KL, Crocker AD (1995) Dopamine receptors in the substantia nigra are involved in the regulation of muscle tone. Proc Natl Acad Sci 92:1669–1673

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep-wake states. J Neurosci 26:10577–10589

    CAS  PubMed  CrossRef  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klinische Wochenschrift 38:1236–1239

    CAS  PubMed  CrossRef  Google Scholar 

  • Factor SA, McAlarney T, Sanchez-Ramos JR, Weiner WJ (1990) Sleep disorders and sleep effect in Parkinson’s disease. Mov Disord 5:280–285

    CAS  PubMed  CrossRef  Google Scholar 

  • Feenstra MG, Botterblom MH, Mastenbroek S (2000) Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100:741–748

    CAS  PubMed  CrossRef  Google Scholar 

  • Frauscher B, Hogl B (2015) Quality control for diagnosis of REM sleep behavior disorder: criteria, questionnaires, video, and polysomnography. In: Videnovic A, Hogl B (eds) Disorders of sleep and circadian rhythms in Parkinson’s disease. Springer, New York, pp 145–158

    Google Scholar 

  • Freeman AH (2015) Neurochemistry of the sleep-wake cycle in Parkinson’s disease. In: Videnovic A, Hogl B (eds) Disorders of sleep and circadian rhythms in Parkinson’s disease. Springer, New York, pp 19–34

    Google Scholar 

  • Geffen L, Jessell T, Cuello A, Iversen L (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260:258–260

    Google Scholar 

  • Gillin JC (1983) The sleep therapies of depression. Prog Neuro-psychopharmacol Biol Psychiatr 7:351–364

    CAS  CrossRef  Google Scholar 

  • Gilson M, Deliens G, Leproult R, Bodart A, Nonclercq A, Ercek R, Peigneux P (2015) REM-enriched naps are associated with memory consolidation for sad stories and enhance mood-related reactivity. Brain Sci 6

    Google Scholar 

  • Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    CAS  PubMed  CrossRef  Google Scholar 

  • Gottesmann C, Gottesman I (2007) The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog Neurobiol 81:237–250

    PubMed  CrossRef  Google Scholar 

  • Grace A (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    CAS  PubMed  CrossRef  Google Scholar 

  • Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatr 11:125–133

    CAS  CrossRef  Google Scholar 

  • Gröger A, Kolb R, Schäfer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE 9:e84081

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Groves PM (1975) Self-inhibition by dopaminergic neurons an alternative to the “neuronal feedback loop” hypothesis for the mode of action of certain psychotropic drugs. In: Philip M. Groves, Charles J. Wilson, Stephen J. Young, George V (eds) Rebec Department of Psychology, University of Colorado, Boulder, CO 80302, USA: Science vol 190, pp 522–528

    Google Scholar 

  • Hamdi A, Brock J, Ross K, Prasad C (1993) Effects of rapid eye movement sleep deprivation on the properties of striatal dopaminergic system. Pharmacol Biochem Behav 46:863–866

    CAS  PubMed  CrossRef  Google Scholar 

  • Hemsley KM, Crocker AD (1998) The effects of an irreversible dopamine receptor antagonist, N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ), on the regulation of muscle tone in the rat: the role of the substantia nigra. Neurosci Lett 251:77–80

    CAS  PubMed  CrossRef  Google Scholar 

  • Hilker R, Razai N, Ghaemi M, Weisenbach S, Rudolf J, Szelies B, Heiss W-D (2003) [18 F] fluorodopa uptake in the upper brainstem measured with positron emission tomography correlates with decreased REM sleep duration in early Parkinson’s disease. Clin Neurol Neurosurg 105:262–269

    PubMed  CrossRef  Google Scholar 

  • Hjorth S, Carlsson A, Wikström H, Lindberg P, Sanchez D, Hacksell U, Arvidsson L-E, Svensson U, Nilsson J (1981) 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sci 28:1225–1238

    CAS  PubMed  CrossRef  Google Scholar 

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Hokfelt T, Martensson, Bjorklund A, Kleiman S, Goldstein M (1984) Handbook of chemical neuroanatomy, vol 2. Elsevier, Amesterdam

    Google Scholar 

  • Hublin C, Launes J, Nikkinen P, Partinen M (1994) Dopamine D2-receptors in human narcolepsy: a SPECT study with 123 I-IBZM. Acta Neurol Scand 90:186–189

    CAS  PubMed  CrossRef  Google Scholar 

  • Ichikawa J, Meltzer HY (1995) Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmacol 281:255–261

    CAS  PubMed  CrossRef  Google Scholar 

  • Ichinohe N, Teng B, Kitai ST (2000) Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Anat Embryol (Berl) 201:435–453

    Google Scholar 

  • Isaac SO, Berridge CW (2003) Wake-promoting actions of dopamine D1 and D2 receptor stimulation. J Pharmacol Exp Ther 307:386–394

    CAS  PubMed  CrossRef  Google Scholar 

  • Isaias IU, Marzegan A, Pezzoli G, Marotta G, Canesi M, Biella GE, Volkmann J, Cavallari P (2011) A role for locus coeruleus in Parkinson tremor. Front Hum Neurosci 5:179

    PubMed  Google Scholar 

  • Jacobs BL (1986) Single unit activity of locus coeruleus neurons in behaving animals. Prog Neurobiol 27:183–194

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones BE (2004) Paradoxical REM sleep promoting and permitting neuronal networks. Archives italiennes de biologie 142:379–396

    CAS  PubMed  Google Scholar 

  • Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Jouvet M (1999) Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21:24S–27S

    CAS  PubMed  Google Scholar 

  • Kataoka H, Ueno S (2014) Auditory musical hallucinations associated with extended-release pramipexole in an elderly patient with Parkinson’s disease. Medicine 93:e251

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kiferle L, Ceravolo R, Giuntini M, Linsalata G, Puccini G, Volterrani D, Bonuccelli U (2014) Caudate dopaminergic denervation and visual hallucinations: evidence from a 123 I-FP-CIT SPECT study. Parkinsonism Relat Disord 20:761–765

    PubMed  CrossRef  Google Scholar 

  • Knable MB, Weinberger DR (1997) Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 11:123–131

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar R, Bose A, Mallick BN (2012) A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One 7:e42059

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kupfer DJ (1976) REM latency: a psychobiologic marker for primary depressive disease. Biol Psychiatry 11:159–174

    CAS  PubMed  Google Scholar 

  • Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12:22–30

    CAS  PubMed  Google Scholar 

  • Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81:105–113

    CAS  PubMed  CrossRef  Google Scholar 

  • Lai YY, Siegel JM (1990) Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 10:2727–2734

    Google Scholar 

  • Lee A (1996) Dopamine (D2) receptor regulation of intracellular calcium and membrane capacitance changes in rat melanotrophs. J Physiol 495:627

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899

    CAS  PubMed  CrossRef  Google Scholar 

  • Lima MM (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17:367–375

    PubMed  CrossRef  Google Scholar 

  • Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188:406–411

    CAS  PubMed  CrossRef  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006a) Identification of wake-active dopaminergic neurons in the ventral periaqueducal grey matter. J Neurosci 26:193–202

    CAS  PubMed  CrossRef  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006b) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    CAS  PubMed  CrossRef  Google Scholar 

  • Luppi PH, Clemento Valencia-Garcias et al (2013) New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med 14:714–718

    PubMed  CrossRef  Google Scholar 

  • MacFarlane J, List S, Moldofsky H, Firnau G, Chen J, Szechtman H, Garnett S, Nahmias C (1997) Dopamine D2 receptors quantified in vivo in human narcolepsy. Biol Psychiatry 41:305–310

    CAS  PubMed  CrossRef  Google Scholar 

  • Mahowald MW, Schenck CH (2000) Diagnosis and management of parasomnias. Clin Cornerstone 2:48–54

    Google Scholar 

  • Mahowald MW, Schenck CH (2011) REM sleep parasomnias. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, edn 5. Elsevier/Saunders, Philadelphia, pp 1083–1097

    Google Scholar 

  • Maj J, Przegalinski E, Mogilnicka E (1984) Hypotheses concerning the mechanism of action of antidepressant drugs. Rev Physiol Biochem Pharmacol, vol 100, Springer, Berlin, pp 1–74

    Google Scholar 

  • Mallick BN, Singh A (2011) REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action. Sleep Med Rev 15:165–178

    PubMed  CrossRef  Google Scholar 

  • Mallick BN, Singh A, Khanday MA (2012) Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 97:259–276

    PubMed  CrossRef  Google Scholar 

  • Maloney KJ, Mainville L, Jones BE (2002) c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15:774–778

    PubMed  CrossRef  Google Scholar 

  • Mansour A, Watson S (1995) Dopamine receptor expression in the central nervous system. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The Fourth Generation of Progress. Raven Press Ltd, New York, pp 207–219

    Google Scholar 

  • Matheson JK, Saper CB (2003) REM sleep behavior disorder A dopaminergic deficiency disorder? Neurology 61:1328–1329

    PubMed  CrossRef  Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Meador-Woodruff JH (1995) Neuroanatomy of dopamine receptor gene expression: potential substrates for neuropsychiatric illness. Clin Neuropharmacol 18:S14–S24

    CrossRef  Google Scholar 

  • Mena-Segovia J, Cintra L, Prospero-Garcia O, Giordano M (2002) Changes in sleep-waking cycle after striatal excitotoxic lesions. Behav Brain Res 136:475–481

    PubMed  CrossRef  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Molloy A, Waddington J (1987) Assessment of grooming and other behavioural responses to the D-1 dopamine receptor agonist SK & F 38393 and its R-and S-enantiomers in the intact adult rat. Psychopharmacology 92:164–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Monti J (1979) The effects of neuroleptics with central dopamine and noradrenaline receptor blocking properties in the l‐dopa and (+)‐amphetamine‐induced waking EEG in the rat: Br J Pharmacol 67:87–91

    Google Scholar 

  • Monti JM (1983) Catecholamines and the sleep-wake cycle II. REM sleep. Life Sci 32:1401–1415

    Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133

    PubMed  CrossRef  Google Scholar 

  • Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernández M (1988) Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology 95:395–400

    CAS  PubMed  CrossRef  Google Scholar 

  • Monti JM, Jantos H, Fernandez M (1989) Effects of the selective dopamine D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Eur J Pharmacol 169:61–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Morgane PJ, Stern WC (1974) Chemical anatomy of brain circuits in relation to sleep and wakefulness. In: Weitzman ED (ed) Advances in sleep research, vol I. Spectrum, New York, pp 1–131

    Google Scholar 

  • Neill DB, Fenton H, Justice JB (2002) Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Behav Brain Res 137:129–138

    CAS  PubMed  CrossRef  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1977) Release of dopamine in vivo from cat substantia nigra. Nature 266:375–377

    Google Scholar 

  • Nirenberg MJ, Chan J, Liu Y, Edwards RH, Pickel VM (1996) Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 16:4135–4145

    CAS  PubMed  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstem D, Fibiger HC (1991) Chronic desipramine enhances aniphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. Eur J Pharmacol 195:63–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Olson EJ, Boeve BF, Silber MH (2000) Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain J Neurol 123:331–339

    CrossRef  Google Scholar 

  • Ongini E, Longo VG (1989) Dopamine receptor subtypes and arousal. Int Rev Neurobiol 31:239–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Ongini E, Caporali M, Massotti M (1985) Stimulation of dopamine D-1 receptors by SKF 38393 induces EEG desynchronization and behavioral arousal. Life Sci 37:2327–2333

    CAS  PubMed  CrossRef  Google Scholar 

  • Pal D, Mallick BN (2009) GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata. Neuroscience 164:404–414

    CAS  PubMed  CrossRef  Google Scholar 

  • Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D (2013) REM sleep dysregulation in depression: state of the art. Sleep Med Rev 17:377–390

    PubMed  CrossRef  Google Scholar 

  • Perugi G, Toni C, Ruffolo G, Frare F, Akiskal H (2001) Adjunctive dopamine agonists in treatment-resistant bipolar II depression: an open case series. Pharmacopsychiatry 34:137–141

    CAS  PubMed  CrossRef  Google Scholar 

  • Pillai V, Kalmbach DA, Ciesla JA (2011) A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers. Biol Psychiatr 70:912–919

    PubMed  CrossRef  Google Scholar 

  • Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P (2011) Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 26:1997–2003

    PubMed  CrossRef  Google Scholar 

  • Post RM, Gerner RH, Carman JS, Gillin JC, Jimerson DC, Goodwin FK, Bunney WE Jr (1978) Effects of a dopamine agonist piribedil in depressed patients: relationship of pretreatment homovanillic acid to antidepressant response. Arch Gen Psychiatr 35:609

    CAS  PubMed  CrossRef  Google Scholar 

  • Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30:4382–4389

    CAS  PubMed  CrossRef  Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology 53:309–314

    CAS  PubMed  CrossRef  Google Scholar 

  • Ranjan A, Biswas S, Mallick BN (2010) Cytomorphometric changes in the dorsal raphe neurons after rapid eye movement sleep deprivation are mediated by noradrenalin in rats. Behav Brain Funct 6:62

    PubMed  CrossRef  Google Scholar 

  • Rice M, Cragg S, Greenfield S (1997) Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol 77:853–862

    CAS  PubMed  Google Scholar 

  • Rinne J, Hublin C, Partinen M, Ruottinen H, Någren K, Lehikoinen P, Ruotsalainen U, Laihinen A (1996) Striatal dopamine D1 receptors in narcolepsy: a PET study with [11C] NNC 756. J Sleep Res 5:262–264

    CAS  PubMed  CrossRef  Google Scholar 

  • Rye DB (2004) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63:S2–S7

    PubMed  CrossRef  Google Scholar 

  • Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18:879–886

    PubMed  CrossRef  Google Scholar 

  • Sakai K, Sastre JP, Kanamori N, Jouvet M (1981) State-specific neurons in pontomedullary reticular formation with special reference to the postural atonia during paradoxical slep in the cat. In: Pompeiano O, Marsan CA (eds) Brain mechanism and perceptual awareness. Raven Press, New York, pp 405–429

    Google Scholar 

  • Salamone J, Aberman J, Sokolowski J, Cousins M (1999) Nucleus accumbens dopamine and rate of responding: neurochemical and behavioral studies. Psychobiology 27:236–247

    CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    CAS  PubMed  CrossRef  Google Scholar 

  • Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262

    CAS  PubMed  CrossRef  Google Scholar 

  • Sandor P, Shapiro CM (1994) Sleep patterns in depression and anxiety: theory and pharmacological effects. J Psychosom Res 38:125–139

    PubMed  CrossRef  Google Scholar 

  • Schenck CH, Mahowald MW (1990) A polysomnographic, neurologic, psychiatric and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RBD): sustained clonazepam efficacy in 89.5 % of 57 treated patients: Clev Clin J Med 57:10–24

    Google Scholar 

  • Schenck CH, Bundlie SR, Ettinger MG, Mohowald M (2002) Chronic behavioral disorders of human REM sleep: a new category of parasomnia. SLEEP-NEW YORK- 25:119

    Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410

    CAS  PubMed  CrossRef  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    CAS  PubMed  Google Scholar 

  • Siegel J (1989) Brainstem mechanisms generating REM sleep. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 104–120

    Google Scholar 

  • Silberman EK, Reus VI, Jimerson DC, Lynott AM, Post RM (1981). Heterogeneity of amphetamine response in depressed patients. Am J Psychiatr 138:1302–1307

    Google Scholar 

  • Steiger A (2007) Neurochemical regulation of sleep. J Psychiatr Res 41:537–552

    PubMed  CrossRef  Google Scholar 

  • Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44:242–252

    PubMed  CrossRef  Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543

    CAS  PubMed  CrossRef  Google Scholar 

  • Stern WC, Morgane PJ (1974) Theoretical view of REM sleep function: maintenance of catecholamine systems in the central nervous system. Behav Biol 11:1–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    Google Scholar 

  • Tepper JM, Sun BC, Martin LP, Creese I (1997) Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J Neurosci 17:2519–2530

    CAS  PubMed  Google Scholar 

  • Theohar C, Fischer-Cornelssen K, Brosch H, Fischer E, Petrovic D (1981) A comparative, multicenter trial between bromocriptine and amitriptyline in the treatment of endogenous depression. Arzneimittel-Forschung 32:783–787

    Google Scholar 

  • Trampus M, Ongini E (1990) The D1 dopamine receptor antagonist SCH 23390 enhances REM sleep in the rat. Neuropharmacology 29:889–893

    CAS  PubMed  CrossRef  Google Scholar 

  • Trampus M, Ferri N, Monopoli A, Ongini E (1991) The dopamine D 1 receptor is involved in the regulation of REM sleep in the rat. Eur J Pharmacol 194:189–194

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsuno N, Besset A, Ritchie K (2005) Sleep and depression. J Clin Psychiatr 66:1254–1269

    PubMed  CrossRef  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    CAS  PubMed  CrossRef  Google Scholar 

  • Usiello A, Baik J-H, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang S, Liao C, Meng W, Huang Q, Li D (2015) Activation of D1-like dopamine receptors increases the NMDA-induced gain modulation through a PKA-dependent pathway in the premotor nucleus of adult zebra finches. Neurosci Lett 589:37–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Wauquier A (1985) Dopamine: its active and permissive roles in sleep-wakefulness: Sleep 84:14–16

    Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res Rev 6:211–224

    CAS  CrossRef  Google Scholar 

  • Wilson S, Argyropoulos S (2005) Antidepressants and sleep. Drugs 65:927–947

    CAS  PubMed  CrossRef  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Google Scholar 

  • Yim CY, Mogenson GJ (1980) Effect of picrotoxin and nipecotic acid on inhibitory response of dopaminergic neurons in the ventral tegmental area to stimulation of the nucleus accumbens. Brain Res 199:466–472

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

MAK and RKY received UGC fellowship. Research funding from Indian funding agencies viz. DBT-BUILDER, PURSE II and UPOE-II under Institutional support and individual support under J.C. Bose fellowship and UGC to BNM are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendra Nath Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanday, M.A., Yadav, R.K., Mallick, B.N. (2016). Dopamine in REM Sleep Regulation. In: Monti, J., Pandi-Perumal, S., Chokroverty, S. (eds) Dopamine and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-46437-4_1

Download citation