Skip to main content

Finding Steady States of Communicating Markov Processes Combining Aggregation/Disaggregation with Tensor Techniques

  • Conference paper
  • First Online:
Computer Performance Engineering (EPEW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9951))

Included in the following conference series:

  • 499 Accesses

Abstract

Stochastic models for interacting processes feature a dimensionality that grows exponentially with the number of processes. This state space explosion severely impairs the use of standard methods for the numerical analysis of such Markov chains. In this work, we develop algorithms for the approximation of steady states of structured Markov chains that consider tensor train decompositions, combined with well-established techniques for this problem – aggregation/disaggregation techniques. Numerical experiments demonstrate that the newly proposed algorithms are efficient on the determination of the steady state of a representative set of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antunes, N., Fricker, C., Robert, P., Tibi, D.: Analysis of loss networks with routing. Ann. Appl. Probab. 16(4), 2007–2026 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolten, M., Kahl, K., Kressner, D., Macedo, F., Sokolović, S.: Multigrid methods combined with amen for tensor structured Markov chains with low rank approximation (2016). arXiv preprint arXiv:1605.06246

  4. Bolten, M., Kahl, K., Sokolović, S.: Multigrid methods for tensor structured Markov chains with low rank approximation (2014). arXiv preprint arXiv:1412.0937

  5. Buchholz, P.: Product form approximations for communicating Markov processes. Perform. Eval. 67(9), 797–815 (2010)

    Article  Google Scholar 

  6. Buchholz, P., Dayar, T.: On the convergence of a class of multilevel methods for large sparse Markov chains. SIAM J. Matrix Anal. Appl. 29(3), 1025–1049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, R.: Iterative methods for overflow queueing networks I. Numer. Math. 51, 143–180 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dayar, T.: Analyzing Markov Chains using Kronecker Products: Theory and Applications. Springer Science & Business Media, Heidelberg (2012)

    Book  MATH  Google Scholar 

  9. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. Part I: SPD systems. ArXiv e-prints, January 2013

    Google Scholar 

  11. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems. ArXiv e-prints, April 2013

    Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  14. Hillston, J., Marin, A., Rossi, S., Piazza, C.: Contextual lumpability. In: Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools, pp. 194–203. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2013)

    Google Scholar 

  15. Horton, G., Leutenegger, S.T.: A multi-level solution algorithm for steady-state Markov chains. In: Gaither, B.D. (ed.), Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 191–200 (1994)

    Google Scholar 

  16. Kaufman, L.: Matrix methods for queuing problems. SIAM J. Sci. Statist. Comput. 4, 525–552 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kressner, D., Macedo, F.: Low-rank tensor methods for communicating Markov processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 25–40. Springer, Heidelberg (2014)

    Google Scholar 

  19. Langville, A.N., Stewart, W.J.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167(2), 429–447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levine, E., Hwa, T.: Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9224–9229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Macedo, F.: Benchmark problems on stochastic automata networks in tensor train format. Technical report, MATHICSE, EPF Lausanne, Switzerland (2015)

    Google Scholar 

  22. Oseledets, I.V.: MATLAB TT-Toolbox Version 2.2 (2011). http://spring.inm.ras.ru/osel/?page id=24

  23. Oseledets, I.V.: Tensor-Train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in Markov chain modelling. Oper. Res. 40, 1156–1179 (1996)

    Article  MATH  Google Scholar 

  26. Plateau, B., Stewart, W.J.: Stochastic automata networks. In: Computational Probability, pp. 113–152. Kluwer Academic Press (1997)

    Google Scholar 

  27. Pultarová, I., Marek, I.: Convergence of multi-level iterative aggregation-disaggregation methods. J. Comput. Appl. Math. 236(3), 354–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sidi, M., Starobinski, D.: New call blocking versus handoff blocking in cellular networks. Wirel. Netw. 3(1), 15–27 (1997)

    Article  Google Scholar 

  29. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  30. Trottenberg, U., Osterlee, C., Schüller, A.: Multigrid. Academic Press, Orlando (2001)

    Google Scholar 

Download references

Acknowledgments

I thank Daniel Kressner (EPF Lausanne) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Macedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Macedo, F. (2016). Finding Steady States of Communicating Markov Processes Combining Aggregation/Disaggregation with Tensor Techniques. In: Fiems, D., Paolieri, M., Platis, A. (eds) Computer Performance Engineering. EPEW 2016. Lecture Notes in Computer Science(), vol 9951. Springer, Cham. https://doi.org/10.1007/978-3-319-46433-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46433-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46432-9

  • Online ISBN: 978-3-319-46433-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics