Skip to main content

Concentrated Matrix Exponential Distributions

  • Conference paper
  • First Online:
Computer Performance Engineering (EPEW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9951))

Included in the following conference series:

Abstract

We revisit earlier attempts for finding matrix exponential (ME) distributions of a given order with low coefficient of variation (\(\hbox {cv}\)). While there is a long standing conjecture that for the first non-trivial order, which is order 3, the \(\hbox {cv}\) cannot be less than 0.200902 but the proof of this conjecture is still missing.

In previous literature ME distributions with low \(\hbox {cv}\) are obtained from special subclasses of ME distributions (for odd and even orders), which are conjectured to contain the ME distribution with minimal \(\hbox {cv}\). The numerical search for the extreme distribution in the special ME subclasses is easier for odd orders and previously computed for orders up to 15. The numerical treatment of the special subclass of the even orders is much harder and extreme distribution had been found only for order 4.

In this work, we further extend the numerical optimization for subclasses of odd orders (up to order 47), and also for subclasses of even order (up to order 14). We also determine the parameters of the extreme distributions, and compare the properties of the optimal ME distributions for odd and even order.

Finally, based on the numerical results we draw conclusions on both, the behavior of the odd and the even orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Code for numerical optimization in Matlab. http://webspn.hit.bme.hu/~illes/mincvnum.zip. Accessed 27 July 2016

  2. Bean, N.G., Nielsen, B.F.: Quasi-birth-and-death processes with rational arrival process components. Stoch. Models 26(3), 309–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Commault, C., Mocanu, S.: Phase-type distributions and representations: some open problems for system theory. Int. J. Control 76(6), 566–580 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. David, A., Larry, S.: The least variable phase type distribution is Erlang. Stoch. Models 3(3), 467–473 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Éltető, T., Rácz, S., Telek, M.: Minimal coefficient of variation of matrix exponential distributions. In: 2nd Madrid Conference on Queueing Theory, Madrid, Spain, July 2006. Abstract

    Google Scholar 

  6. Horváth, I., Telek, M.: A constructive proof of the phase-type characterization theorem. Stoch. Models 31(2), 316–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maier, R.S.: The algebraic construction of phase-type distributions. Commun. Stat. Stoch. Models 7(4), 573–602 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mocanu, S., Commault, C.: Sparse representations of phase-type distributions. Commun. Stat. Stoch. Models 15(4), 759–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colm Art O’Cinneide: Characterization of phase-type distributions. Commun. Stat. Stoch. Models 6(1), 1–57 (1990)

    Google Scholar 

  10. Horvath, A., Buchholz, P., Telek, M.: Stochastic Petri nets with low variation matrix exponentially distributed firing time. Int. J. Perform. Eng. 7, 441–454 (2011)

    Google Scholar 

  11. Rechenberg, I.: Evolutionstrategie: Optimierung technisher Systeme nach Prinzipien des biologischen Evolution. Frommann-Hollboog Verlag, Stuttgart (1973)

    Google Scholar 

  12. van de Liefvoort, A.: The moment problem for continuous distributions. Technical report, WP-CM–02, University of Missouri, Kansas City (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illés Horváth .

Editor information

Editors and Affiliations

Appendices

A Various Forms of Matrix Exponential Functions

This section is dedicated to show the equivalence of the various forms of matrix exponential functions throughout the paper. Specifically, we show the equivalence of the forms (2) and (3) and also show how (4) (and also (5)) can be brought to a form consistent with (2) and (3).

As mentioned in Sect. 2, (2) can be converted directly into (3) using the Jordan-decomposition of A.

From a pdf given in the form (3), one can reconstruct a matrix-vector representation in (2) in the following manner: A will be in block-diagonal form, with each block corresponding to either a single real eigenvalue \(\lambda _j\) or a pair of complex eigenvalues \(\lambda _j,\lambda _{j+1}=a\pm \mathcal{I} b\), where \(\mathcal{I} = \sqrt{-1}\).

If \(\lambda _j\) is real, then the block in A is

$$\left[ \lambda _j\right] \quad \text {and} \quad \left[ \begin{array}{ccccc} \lambda _j &{} 1 &{} 0 &{} \dots &{} 0\\ 0 &{} \lambda _j &{} 1 &{} \dots &{} 0\\ \vdots &{} &{} \ddots \\ &{} &{} &{} \lambda _j &{} 1\\ 0 &{} &{} \dots &{} 0 &{} \lambda _j \end{array} \right] $$

for multiplicity 1 and \(N_j>1\), respectively.

For a complex pair of eigenvalues \(\lambda _j,\lambda _{j+1}=a\pm \mathcal{I} b\), the block is

$$\left[ \begin{array}{cc} a &{} b\\ -b &{} a \end{array} \right] \quad \text {or} \quad \left[ \begin{array}{ccccccccc} a &{} b &{} 1 &{} 0 &{} &{} &{} &{} &{} 0 \\ -b &{} a &{} 0 &{} 1 &{} 0 &{} &{} \dots &{} &{} 0\\ 0 &{} 0 &{} a &{} b &{} 1 &{} 0 &{} &{} &{} 0\\ 0 &{} 0 &{} -b &{} a &{} 0 &{} 1 &{} 0 &{} &{} 0\\ 0 \\ \vdots &{} &{} &{} &{} &{} \ddots &{} &{} &{} \vdots \\ \\ &{} &{} &{} &{} &{} &{} &{} a &{} b\\ 0 &{} &{} &{} \dots &{} &{} &{} &{} -b &{} a \end{array}\right] $$

for multiplicity 1 or \(N_j>1\) respectively (the matrix on the right is size \(2N_j\times 2N_j\)). Once A is constructed, \(\alpha \) can be obtained by solving a system of linear equations.

Finally, (4) can be represented in a form consistent with (3); the eigenvalues are \(-1,(-1\pm 2\mathcal{I}\omega ),\dots ,\left( -1\pm (n-1)\mathcal{I}\omega \right) \). We demonstrate this for \(n=5\); for higher odd values of n, it follows a similar structure, albeit with more terms:

$$\begin{aligned} f(t) =&\mathrm {e}^{-t} \cos ^2(\omega t -\phi _1)\cos ^2(\omega t -\phi _2)\\ =&\frac{1}{8}\mathrm {e}^{-t} \big (2+\cos (2\phi _1-2\phi _2)\big ) +\frac{1}{8}\mathrm {e}^{-t} \big (\cos (2\phi _1)\cos (2t\omega )\\&+\sin (2\phi _1)\sin (2t\omega )+ \cos (2\phi _2)\cos (2t\omega )+\sin (2\phi _2)\sin (2t\omega )\big )\\&+\frac{1}{8}\mathrm {e}^{-t}\big (\cos (2\phi _1+2\phi _2)\cos (4t\omega ) +\sin (2\phi _1+2\phi _2)\sin (4t\omega ) \big )\\ =&\frac{1}{8} \mathrm {e}^{-t}(2+\cos (2\phi _1-2\phi _2))+\\&+\frac{1}{8} (\mathrm {e}^{2i\phi _1}+\mathrm {e}^{2i\phi _2})e^{(-1-2i\omega )t}+ \frac{1}{8} (\mathrm {e}^{-2i\phi _1}-\mathrm {e}^{2i\phi _2})e^{(-1+2i\omega )t}+\\&\frac{1}{16}\mathrm {e}^{2i(\phi _1+\phi _2)} \mathrm {e}^{2t(-1+4i\omega )}+ \frac{1}{16}\mathrm {e}^{-2i(\phi _1+\phi _2)} \mathrm {e}^{2t(-1-4i\omega )}. \end{aligned}$$

Representing (5) in a form consistent with (3) is essentially the same, just with one extra real eigenvalue.

B Optimal Parameter Values

Table 4. Optimal parameter values for odd values \(19\le n\le 47\)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Horváth, I., Sáfár, O., Telek, M., Zámbó, B. (2016). Concentrated Matrix Exponential Distributions. In: Fiems, D., Paolieri, M., Platis, A. (eds) Computer Performance Engineering. EPEW 2016. Lecture Notes in Computer Science(), vol 9951. Springer, Cham. https://doi.org/10.1007/978-3-319-46433-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46433-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46432-9

  • Online ISBN: 978-3-319-46433-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics