Advertisement

Simulating Hybrid Systems Within SIMTHESys Multi-formalism Models

  • Enrico BarbieratoEmail author
  • Marco Gribaudo
  • Mauro Iacono
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9951)

Abstract

As many real world systems evolve according to phenomena characterized by a continuous time dependency, literature studied several approaches to correctly capture all their aspects. Since their analysis is not trivial, different high level approaches have been proposed, such as classical pure mathematical analysis or tool-oriented frameworks like Fluid Stochastic Petri Nets. Each approach has its specific purposes and naturally addresses some application field. This paper instead focuses on the simulation of models written in a custom Hybrid Systems (HS) formalism. The key aspect of this work is focused on the use within a framework called SIMTHESys of a function describing how the fluid variables evolve, providing more efficient simulation with respect to traditional approaches.

Keywords

Hybrid systems Simulation SIMTHESys 

Notes

Acknowledgements

The results of this work have been partially funded by EUBra-BIGSEA (grant agreement no. 690116), a Research and Innovation Action (RIA) funded by the European Commission under the Cooperation Programme, Horizon 2020 and the Ministrio de Cincia, Tecnologia e Inovao (MCTI), RNP/Brazil (grant GA0000000650/04).

References

  1. 1.
    Antsaklis, P.J., Koutsoukos, X.D.: Hybrid Systems: Review and Recent Progress, pp. 273–298. Wiley, Hoboken (2005)Google Scholar
  2. 2.
    Barbierato, E., Gribaudo, M., Iacono, M.: Exploiting multiformalism models for testing and performance evaluation in SIMTHESys. In: Proceedings of 5th International ICST Conference on Performance Evaluation Methodologies and Tools - VALUETOOLS 2011 (2011)Google Scholar
  3. 3.
    Barbierato, E., Gribaudo, M., Iacono, M.: A performance modeling language for big data architectures. In: Rekdalsbakken, W., Bye, R.T., Zhang, H. (eds.) ECMS, pp. 511–517. European Council for Modeling and Simulation (2013)Google Scholar
  4. 4.
    Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in SIMTHESys. In: Proceedings of the 8th International Workshop on Practical Applications of Stochastic Modelling (2016, to appear)Google Scholar
  5. 5.
    Barbierato, E., Gribaudo, M., Iacono, M., Marrone, S.: Performability modeling of exceptions-aware systems in multiformalism tools. In: Al-Begain, K., Balsamo, S., Fiems, D., Marin, A. (eds.) ASMTA 2011. LNCS, vol. 6751, pp. 257–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Barbierato, E., Rossi, G.L.D., Gribaudo, M., Iacono, M., Marin, A.: Exploiting product forms solution techniques in multiformalism modeling. Electron. Notes Theoret. Comput. Sci. 296, 61–77 (2013)CrossRefGoogle Scholar
  7. 7.
    Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theoret. Comput. Sci. 411(20), 2052–2077 (2010). http://www.sciencedirect.com/science/article/pii/S0304397510001039, hybrid Automata and Oscillatory Behaviour in Biological SystemsGoogle Scholar
  8. 8.
    Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006). http://dx.doi.org/10.1561/1000000001
  9. 9.
    Davis, M.: Markov Models & Optimization. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, Abingdon (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gribaudo, M., Sereno, M.: Simulation of fluid stochastic petri nets. In: 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Proceedings, pp. 231–239 (2000)Google Scholar
  11. 11.
    Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic petri nets augmented with flush-out arcs: modelling and analysis. Discrete Event Dyn. Syst. 11(1–2), 97–117 (2001). http://dx.doi.org/10.1023/A:1008339216603
  12. 12.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS 1996, p. 278. IEEE Computer Society, Washington, DC (1996)Google Scholar
  13. 13.
    Henzinger, T.A., Ho, P.H., Wong-toi, H.: Hytech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 460–463 (1997)zbMATHGoogle Scholar
  14. 14.
    Iacono, M., Gribaudo, M.: Element based semantics in multi formalism performance models. In: MASCOTS, pp. 413–416. IEEE (2010)Google Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128–142 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Larsen, K.G., Pettersson, P., Yi, W.: Diagnostic model-checking for real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Proceedings of Workshop on Verification and Control of Hybrid Systems III. LNCS, vol. 1066, pp. 575–586. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logistics Q. 26(3), 403–413 (1979). doi: 10.1002/nav.3800260304 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, J., Liu, X., Lee, E.A.: Modeling distributed hybrid systems in ptolemy ii. Proceedings of the American Control Conference, pp. 4984–4985 (2001)Google Scholar
  19. 19.
    Mitra, D.: Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Adv. Appl. Probab. 20(3), 646–676 (1988). http://www.jstor.org/stable/1427040 Google Scholar
  20. 20.
    Zanoli, S.M., Barboni, L., Leo, T.: An application of hybrid automata for the mimo model identification of a gasification plant. In: IEEE International Conference on Systems, Man and Cybernetics, 2007, ISIC, pp. 1427–1432, October 2007Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Enrico Barbierato
    • 1
    Email author
  • Marco Gribaudo
    • 1
  • Mauro Iacono
    • 2
  1. 1.Dip. di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanoItaly
  2. 2.Dip. di Matematica e FisicaSeconda Università degli Studi di NapoliCasertaItaly

Personalised recommendations