Advertisement

Pseudoinversion Fractals

  • Krzysztof Gdawiec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)

Abstract

In this paper, we present some modifications of inversion fractals. The first modification is based on the use of different metrics in the inversion transformation. Moreover, we propose a switching process between different metric spaces. All the proposed modifications allowed us to obtain new and diverse fractal patterns that differ from the original inversion fractals.

Keywords

Fractal Pseudoinversion Computer art 

References

  1. 1.
    Frame, M., Cogevina, T.: An infinite circle inversion limit set fractal. Comput. Graph. 24(5), 797–804 (2000)CrossRefGoogle Scholar
  2. 2.
    Gdawiec, K.: Star-shaped set inversion fractals. Fractals 22(4), 1450009, 7 pages (2014)Google Scholar
  3. 3.
    Gdawiec, K.: Inversion fractals and iteration processes in the generation of aesthetic patterns. Comput. Graph. Forum. (in press). doi: 10.1111/cgf.12783
  4. 4.
    Lu, J., Zou, Y., Tu, G., Wu, H.: A family of functions for generating colorful patterns with mixed symmetries from dynamical systems. In: Wang, W. (ed.) Mechatronics and Automatic Control Systems. LNEE, vol. 237, pp. 883–890. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-01273-5_99 CrossRefGoogle Scholar
  5. 5.
    Mitchell, K.: Fun with chaotic orbits in the Mandelbrot set. In: Bridges 2012, pp. 389–392. Towson, USA (2012)Google Scholar
  6. 6.
    Ouyang, P., Cheng, D., Cao, Y., Zhan, X.: The visualization of hyperbolic patterns from invariant mapping method. Comput. Graph. 36(2), 92–100 (2012)CrossRefGoogle Scholar
  7. 7.
    Raïssouli, M., Jebril, I.H.: Various proofs for the decrease monotonicity of the Schatten’s power norm, various families of \(\mathbb{R}^{n}\)-norms and some open problems. Int. J. Open Probl. Comput. Sci. Math. 3(2), 164–174 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ramírez, J.L., Rubiano, G.N., Zlobec, B.J.: Generating fractal patterns by using \(p\)-circle inversion. Fractals 23(4), 1550047, 13 pages (2015)Google Scholar
  9. 9.
    van Loocke, P.: Polygon-based fractals from compressed iterated function systems. IEEE Comput. Grap. Appl. 30(2), 34–44 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations