Skip to main content

Linear Spectral Mixture Analysis of Hyperspectral Images with Atmospheric Distortions

  • 1176 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9972)

Abstract

In this paper a novel method of linear spectral mixture parameters estimation for hyperspectral images is proposed. This method allows to omit preliminary atmospheric correction of input image. To provide a solution to mixture problem different models of radiation transmission in atmosphere are considered. An evaluation of effect of noise, number of input pixels and number of signatories on accuracy of restored linear mixture coefficients and input pixel representation error is provided.

Keywords

  • Hyperspectral images
  • Linear spectral mixture analysis
  • Atmospheric correction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46418-3_12
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-46418-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Matthew, M.V., Adler-Golden, S.M., Berk, A., Felde, G., Anderson, G.P., Gorodetzky, D., Paswaters, S., Shippert, M.: Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In: Applied Imagery Pattern Recognition Workshop, 2002, AIPR, 31 February 2002, pp. 157–163. IEEE (2002)

    Google Scholar 

  2. Kruse, F.A.: Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. In: Summaries of 13th JPL Airborne Geoscience Workshop, Jet Propulsion Lab, Pasadena, CA (2004)

    Google Scholar 

  3. Belov, A.M., Myasnikov, V.V.: Atmospheric correction of hyperspectral images based on approximate solution of transmittance equation. In: 7th International Conference on Machine Vision (ICMV 2014), pp. 94450S–94450S5. International Society for Optics and Photonics (2015)

    Google Scholar 

  4. Chang, C.I.: Hyperspectral Data Processing: Algorithm Design and Analysis. Wiley, Hoboken (2013)

    CrossRef  MATH  Google Scholar 

  5. Keshara, N.A.: Survey of spectral unmixing algorithms. Lincoln Lab. J. 14(1), 55–78 (2003)

    Google Scholar 

  6. Denisova, A., Myasnikov, V.: Fully constrained linear spectral unmixing algorithm for hyperspectral image analysis. Comput. Opt. 38(4), 782–789 (2014)

    CrossRef  Google Scholar 

  7. Yuanliu, X., Runsheng, W., Shengwei, L., Suming, Y., Bokun, Y.: Atmospheric correction of hyperspectral data using MODTRAN model. Proc. SPIE Int. Soc. Opt. Eng. 7123, 7123061–7123067 (2003)

    Google Scholar 

  8. Kruse, F.A., Boardman, J.W., Huntington, J.F.: Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 41(6), 1388–1400 (2003)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (RSF), grant no. 14-31-00014 Establishment of a Laboratory of Advanced Technology for Earth Remote Sensing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Denisova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Denisova, A., Juravel, Y., Myasnikov, V. (2016). Linear Spectral Mixture Analysis of Hyperspectral Images with Atmospheric Distortions. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46418-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46417-6

  • Online ISBN: 978-3-319-46418-3

  • eBook Packages: Computer ScienceComputer Science (R0)