Abstract
This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Available from http://apromore.org/platform/tools.
- 3.
This collection originally counted 59 models, but we discarded five duplicates.
- 4.
The original labels are replaced with letters for the sake of compactness.
References
Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B.F., Aalst, W.M.P.: Alignment based precision checking. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9_15
Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of EDOC. IEEE (2011)
Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5_19
Curran, T., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)
Dumas, M., García-Bañuelos, L., La Rosa, M., Uba, R.: Fast detection of exact clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2013)
Dumas, M., Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.: Understanding business process models: the costs and benefits of structuredness. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9_3
Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of IJCAI, pp. 1137–1145. Morgan Kaufmann (1995)
Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38697-8_17
Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)
Molka, T., Redlich, D., Gilani, W., Zeng, X.-J., Drobek, M.: Evolutionary computation based discovery of hierarchical business process models. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 191–204. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19027-3_16
Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387 (1982)
Oulsnam, G.: The algorithmic transformation of schemas to structured form. Comput. J. 30(1), 43–51 (1987)
Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf. Syst. 37(6), 518–538 (2012)
Polyvyanyy, A., García-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring of acyclic process models. Comput. J. 57(1), 12–35 (2014)
Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19589-1_2
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)
Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceedings of CIDM. IEEE (2011)
Acknowledgments
This research is partly funded by the Australian Research Council (grant DP150103356) and the Estonian Research Council (grant IUT20-55).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G. (2016). Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure. In: Comyn-Wattiau, I., Tanaka, K., Song, IY., Yamamoto, S., Saeki, M. (eds) Conceptual Modeling. ER 2016. Lecture Notes in Computer Science(), vol 9974. Springer, Cham. https://doi.org/10.1007/978-3-319-46397-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-46397-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46396-4
Online ISBN: 978-3-319-46397-1
eBook Packages: Computer ScienceComputer Science (R0)