Skip to main content

Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9974))

Included in the following conference series:

Abstract

This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.processmining.be/fodina.

  2. 2.

    Available from http://apromore.org/platform/tools.

  3. 3.

    This collection originally counted 59 models, but we discarded five duplicates.

  4. 4.

    The original labels are replaced with letters for the sake of compactness.

References

  1. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B.F., Aalst, W.M.P.: Alignment based precision checking. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9_15

    Chapter  Google Scholar 

  2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of EDOC. IEEE (2011)

    Google Scholar 

  3. Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5_19

    Chapter  Google Scholar 

  4. Curran, T., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)

    Google Scholar 

  5. Dumas, M., García-Bañuelos, L., La Rosa, M., Uba, R.: Fast detection of exact clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2013)

    Article  Google Scholar 

  6. Dumas, M., Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.: Understanding business process models: the costs and benefits of structuredness. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9_3

    Chapter  Google Scholar 

  7. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)

    Article  Google Scholar 

  8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  9. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of IJCAI, pp. 1137–1145. Morgan Kaufmann (1995)

    Google Scholar 

  10. Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  11. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)

    Book  Google Scholar 

  12. Molka, T., Redlich, D., Gilani, W., Zeng, X.-J., Drobek, M.: Evolutionary computation based discovery of hierarchical business process models. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 191–204. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19027-3_16

    Chapter  Google Scholar 

  13. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387 (1982)

    Article  MATH  Google Scholar 

  14. Oulsnam, G.: The algorithmic transformation of schemas to structured form. Comput. J. 30(1), 43–51 (1987)

    Article  MATH  Google Scholar 

  15. Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf. Syst. 37(6), 518–538 (2012)

    Article  Google Scholar 

  16. Polyvyanyy, A., García-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring of acyclic process models. Comput. J. 57(1), 12–35 (2014)

    Article  Google Scholar 

  17. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19589-1_2

    Chapter  Google Scholar 

  18. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  19. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  20. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)

    Article  Google Scholar 

  21. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceedings of CIDM. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

This research is partly funded by the Australian Research Council (grant DP150103356) and the Estonian Research Council (grant IUT20-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Augusto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G. (2016). Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure. In: Comyn-Wattiau, I., Tanaka, K., Song, IY., Yamamoto, S., Saeki, M. (eds) Conceptual Modeling. ER 2016. Lecture Notes in Computer Science(), vol 9974. Springer, Cham. https://doi.org/10.1007/978-3-319-46397-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46397-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46396-4

  • Online ISBN: 978-3-319-46397-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics