Skip to main content

A Combinatorial Metrical Task System Problem Under the Uniform Metric

  • Conference paper
  • First Online:
  • 1193 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9925))

Abstract

We consider a variant of the metrical task system (MTS) problem under the uniform metric, where each decision corresponds to some combinatorial object in a fixed set (e.g., the set of all s-t paths of a fixed graph). Typical algorithms such as Marking algorithm are not known to solve this problem efficiently and straightforward implementations takes exponential time for many classes of combinatorial sets. We propose a modification of Marking algorithm, which we call Weighted Marking algorithm. We show that Weighted Marking algorithm still keeps \(O(\log n)\) competitive ratio for the standard MTS problem with n states. On the other hand, combining with known sampling techniques for combinatorial sets, Weighted Marking algorithm works efficiently for various classes of combinatorial sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abernethy, J., Bartlett, P.L., Buchbinder, N., Stanton, I.: A regularization approach to metrical task systems. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 6331, pp. 270–284. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16108-7_23

    Chapter  Google Scholar 

  2. Ailon, N., Hatano, K., Takimoto, E.: Bandit online optimization over the permutahedron. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 8776, pp. 215–229. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11662-4_16

    Google Scholar 

  3. Bansal, N., Buchbinder, N., Madry, A., Naor, J.S.: A polylogarithmic-competitive algorithm for the k-server problem. J. ACM 62(5), 40:1–40:49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)-competitive algorithm for metrical task systems. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 711–719. ACM, New York (1997)

    Google Scholar 

  5. Bartal, Y., Bollobas, B., Mendel, M.: A Ramsey-type theorem for metric spaces and its applications for metrical task systems and related problems. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science, pp. 396–405, October 2001

    Google Scholar 

  6. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-optimality in lists and trees. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp. 1–8. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Google Scholar 

  7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  8. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchbinder, N., Chen, S., Naor, J.S., Shamir, O.: Unified algorithms for online learning and competitive analysis. Math. Oper. Res. 41(2), 612–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cesa-Bianchi, N., Lugosi, G.: Combinaotrial bandits. J. Comput. Syst. Sci. 78(5), 1404–1422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gupta, A., Talwar, K., Wieder, U.: Changing bases: multistage optimization for matroids and matchings. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2015. LNCS, vol. 8572, pp. 563–575. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7_47

    Google Scholar 

  14. Irani, S., Seiden, S.: Randomized algorithms for metrical task systems. Theor. Comput. Sci. 194(12), 163–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. J. Comput. Syst. Sci. 71(3), 291–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5), 971–983 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. J. Mach. Learn. Res. 4(5), 773–818 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for useful comments. Hatano is grateful to the supports from JSPS KAKENHI Grant Number 16K00305. Takimoto is grateful to the supports from JSPS KAKENHI Grant Number 15H02667. In addition, the authors acknowledge the support from MEXT KAKENHI Grant Number 24106010 (the ELC project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Moridomi .

Editor information

Editors and Affiliations

A On Assumption 1

A On Assumption 1

As is well known as a folklore, we can assume without loss of generality that the loss vectors \(\varvec{\ell }_t\) are small enough, so that Assumption 1 is satisfied.

Assumption 1

Whenever the previous state \(\varvec{c}_{t-1}\) satisfies \(\varvec{c}_{t-1} \cdot \varvec{L}< L\), where \(\varvec{L}\) is the cumulative loss vectors up to round \(t-1\) in the current phase, and the phase did not end at round \(t-1\), i.e., \(\min _{\varvec{c}^* \in C} \varvec{c}^* \cdot \varvec{L}< 1\), then \(\varvec{\ell }_t\) satisfies the two conditions:

  1. 1.

    \(\varvec{c}_{t-1} \cdot (\varvec{L}+ \varvec{\ell }_t) \le L\), and

  2. 2.

    \(\min _{\varvec{c}^* \in C} \varvec{c}^* \cdot (\varvec{L}+ \varvec{\ell }_t) \le 1\).

This is because, when \(\varvec{\ell }_t\) violates the assumption, then we can replace \(\varvec{\ell }_t\) by a sequence of non-negative loss vectors \(\varvec{\ell }_{t_1}, \varvec{\ell }_{t_2}, \ldots , \varvec{\ell }_{t_k}\) so that \(\varvec{\ell }_t = \varvec{\ell }_{t_1} + \cdots + \varvec{\ell }_{t_k}\) and the new sequence of loss vectors satisfy the assumption in the following way:

  1. 1.

    If the first condition is violated, i.e., \(\varvec{c}_{t-1} \cdot (\varvec{L}+ \varvec{\ell }_t) = a > L\), then we let

    $$\begin{aligned} \alpha _1 = \frac{L-\varvec{c}_{t-1} \cdot \varvec{L}}{a - \varvec{c}_{t-1} \cdot \varvec{L}}. \end{aligned}$$

    Otherwise, we let \(\alpha _1 = 1\). In the former case, we can easily verify that \(0< \alpha _1 < 1\) and \(\varvec{c}_{t-1} \cdot (\varvec{L}+ \alpha _1 \varvec{\ell }_t) = L\).

  2. 2.

    If the second condition is violated, i.e., \(\min _{\varvec{c}^* \in C} \varvec{c}^* \cdot (\varvec{L}+\varvec{\ell }_t) > 1\), then we let \(0< \alpha _2 < 1\) be such that \(\min _{\varvec{c}^* \in C} \varvec{c}^* \cdot (\varvec{L}+\alpha _2 \varvec{\ell }_t) = 1\). Otherwise, we let \(\alpha _2 = 1\). Note that, in the former case, we can find such \(\alpha _2\) efficiently by binary search.

  3. 3.

    Let \(\alpha = \min \{\alpha _1,\alpha _2\}\) and \(\varvec{\ell }_{t_1} = \alpha \varvec{\ell }_t\) and \(\varvec{\ell }_{t_2} = (1 - \alpha ) \varvec{\ell }_t\). Then, clearly \(\varvec{\ell }_{t_1}\) satisfies Assumption 1. If \(\varvec{\ell }_{t_2}\) still violates the assumption, then repeat the same procedure for \(\varvec{\ell }_{t_2}\) recursively.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nakazono, T., Moridomi, Ki., Hatano, K., Takimoto, E. (2016). A Combinatorial Metrical Task System Problem Under the Uniform Metric. In: Ortner, R., Simon, H., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2016. Lecture Notes in Computer Science(), vol 9925. Springer, Cham. https://doi.org/10.1007/978-3-319-46379-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46379-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46378-0

  • Online ISBN: 978-3-319-46379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics