Advertisement

Making Life “Visible”: Organism Concepts in Biology and Architecture as the Basis for an Interdisciplinary Synopsis of Constructional Biomimetics

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 8)

Abstract

Within biomimetics, scientists are challenged by the interdisciplinary exchange of knowledge and concepts, which include functional principles in complex systems of biological organisms, buildings and machines. One concept, that is used in biology as well as in architecture and in engineering, is the concept of the “organism”. Despite representing the primary hierarchical level on which morphological form and functionality interact, the individual organism, as a functional unit, has been increasingly neglected within modern biology. A similar trend can be recognized within modern architecture: as an integral concept, the built form has been lost from view. This article raises the question as to how the term “organism” and its function in the discourse of architecture can be conceptualized and possibly used as a unifying concept in interdisciplinary biomimetic research. While in biology, the “organism” is a more or less well defined concept to denote living entities, in an architectural sense, it functions as a model or topos, i.e. a commonly plausible semantic form that is usually not explicitly stated, but still becomes operative in establishing form decisions. As a case example, in this contribution, the focus is on the use of the “organism” in the German Romantic discourse of architecture and aesthetics, namely in the writings of Schelling and in Schinkel’s architectural designs. Thereby, it becomes apparent how a scientific term can be transferred into a model for designing buildings.

Keywords

Aesthetics Architecture Argumentation theory Biomimetics Concept Interdisciplinarity Naturphilosophie Novalis Organic architecture Organismus Romanticism Schinkel Scientific communication Topos Unity 

Notes

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’, project C02 ‘Organism concepts in biology and architecture as the basis for an interdisciplinary synopsis of constructional biomimetics.’

References

  1. Bateson G (1972) Steps to an ecology of mind. Collected essays in anthropology, psychiatry, evolution, and epistemology. Jason Aronson, Northvale/LondonGoogle Scholar
  2. Behne A (1926) Der moderne Zweckbau. Drei Masken Verlag, BerlinGoogle Scholar
  3. Blümle C, Schäfer A (2007) Organismus und Kunstwerk. Zur Einführung. In: Blümle C, Schäfer A (eds) Struktur, Figur, Kontur. Abstraktion in Kunst und Lebenswissenschaften. Diaphanes, Berlin, pp 9–25Google Scholar
  4. Campbell NA, Reece JB (2009) Biologie. Pearson Studium, MünchenGoogle Scholar
  5. Caplan AL (1987) Why the problem of reductionism in biological science will not go away. Growth 51:22–34PubMedGoogle Scholar
  6. Drack M, Pouvreau D (2015) On the history of Ludwig von Bertalanffy’s “General systemology”, and on its relationship to cybernetics – Part III: convergences and divergences. Int J Gen Syst 44:523–571CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gegenbaur C (1870) Grundzüge der vergleichenden Anatomie. W. Engelmann, LeipzigGoogle Scholar
  8. Guillén MF (2006) The taylorized beauty of the mechanical: scientific management and the rise of modernist architecture. Princeton University Press, Princeton/OxfordGoogle Scholar
  9. Homberger DG (1988) Models and tests in functional morphology: the significance of description and integration. Am Zool 28:217–229CrossRefGoogle Scholar
  10. Karr JR, James FC (1975) Eco-morphological configurations and convergent evolution in species and communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap, Cambridge, MA, pp 258–291Google Scholar
  11. Laubichler MD (2005) Systemtheoretische Organismuskonzeptionen. In: Krohs U, Toepfer G (eds) Philosophie der Biologie. Suhrkamp, Frankfurt am Main, pp 109–124Google Scholar
  12. Limpinsel M (2016) Was macht Wissen plausibel? Topische Objektkonstitution in den Geisteswissenschaften. In: Kämper H, Warnke IH, Schmidt-Brücken D (eds) Textuelle Historizität. Interdisziplinäre Perspektiven auf das historische Apriori (Discourse Patterns 12). De Gruyter, Berlin/Boston, pp 105–121Google Scholar
  13. Maier W (1999) On the evolutionary biology of early mammals – with methodological remarks on the interaction between ontogenetic adaption and phylogenetic transformation. Zool Anz 238:55–74Google Scholar
  14. Motta PJ, Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth J Zool 43(2–3):400–415Google Scholar
  15. Nachtigall W (2010) Bionik als Wissenschaft: Erkennen – Abstrahieren – Umsetzen. Springer, BerlinCrossRefGoogle Scholar
  16. Nönnig JR (2007) Architektur. Sprache. Komplexität. Acht Essays zur Architekturepistemologie. Bauhaus Universität, WeimarGoogle Scholar
  17. Perelman C, Olbrechts-Tyteca L (2004) Die neue Rhetorik. Eine Abhandlung über das Argumentieren. Ed. Josef Kopperschmidt, problemata, Bd. 149, Stuttgart-Bad CannstattGoogle Scholar
  18. Perret A (1952) Contribution à une théorie de l’architecture. Cercle d’études architecturales, ParisGoogle Scholar
  19. Plato (1981) Werke in acht Bänden. Ed. Gunther Eigler. Bd. 5, Phaidros. Parmenides. Briefe. Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
  20. Reilly SM, Wainwright PC (1994) Conclusion: ecological morphology and the power of integration. In: Wainwright PC, Reilly SM (eds) Ecological morphology. The University of Chicago Press, Chicago/London, pp 339–354Google Scholar
  21. Riedl R (2000) Strukturen der Komplexität. Eine Morphologie des Erkennens und Erklärens. Springer, BerlinCrossRefGoogle Scholar
  22. Ripley RL, Bhushan B (2016) Bioarchitecture: bioinspired art and architecture—a perspective. Phil Trans R Soc A 374Google Scholar
  23. Sauer KP (1992) Morphologie und Evolution. Verh Dtsch Zool Ges 85(2):349–357Google Scholar
  24. Schinkel KF (1979) Das architektonische Lehrbuch. Ed. Goerd Peschken. Deutscher Kunstverlag. BerlinGoogle Scholar
  25. Thaler L (1984) Organische Form in der Musiktheorie des 19. und beginnenden 20. Jahrhunderts. Musikverlag Emil Katzbichler, München.Google Scholar
  26. Toepfer G (2011) Organismus. In: Toepfer G (ed) Historisches Wörterbuch der Biologie. Geschichte und Theorie der biologischen Grundbegriffe. Metzler, StuttgartGoogle Scholar
  27. van Eck C (1994) Organicism in nineteenth-century architecture. An inquiry into its theoretical and philosophical background. Architectura & Natura Press, AmsterdamGoogle Scholar
  28. Vincent JFC (2014) An ontology of biomimetics. In: Goel AK et al (eds) Biologically inspired design. Springer, LondonGoogle Scholar
  29. Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. MIT Press, Cambridge, MAGoogle Scholar
  30. Zoglauer, T (1994) Modellübertagungen als Mittel interdisziplinärer Forschung. In: Maier W, Zoglauer T (eds) Technomorphe Organismuskonzepte. Modellübertragungen zwischen Biologie und Technik. problemata 128, frommann-holzboog, Stuttgart, pp 12–24Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Architectural Theory (IGMA)University of StuttgartStuttgartGermany
  2. 2.Evolutionary Biology of Invertebrates, Institute of Evolution and EcologyUniversity of TübingenTübingenGermany
  3. 3.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations