Skip to main content

The Skeleton of the Sand Dollar as a Biological Role Model for Segmented Shells in Building Construction: A Research Review

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Abstract

Concrete double-curved shell constructions have been used in architectural design and building constructions since the beginning of the twentieth century. Although monolithic shells show a high stiffness as their geometry transfers loads through membrane forces, they have been mostly replaced by the more cost-efficient lattice systems. As lattice systems are covered by planar glass or metal panes, they neither reach the structural efficiency of monolithic shells, nor is their architectural elegance reflected in a continuous curvature. The shells of sand dollars’ – highly adapted sea urchins – combine a modular and multi-plated shell with a flexible, curved as well as smooth design of a monolithic construction. The single elements of the sand dollars’ skeleton are connected by calcite protrusions and can be additionally supported by organic fibres. The structural efficiency of the sea urchin’s skeleton and the principles behind them can be used for innovations in engineering sciences and architectural design while, at the same time, they can be used to illustrate the biological adaptations of these ecologically important animals within their environments. The structure of the sand dollar’s shell is investigated using modern as well as established imaging techniques such as x-ray micro-computed tomography (μCT), scanning electron microscopy and various optical imaging techniques. 3D models generated by μCT scans are the basis for Finite Element Analysis of the sand dollar’s shell to identify possible structural principles and to analyse their structural behaviour. The gained insights of the sand dollar’s mechanical properties can then be used for improving the state-of-the-art techniques of engineering sciences and architectural design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou Chakra M, Stone JR (2011) Holotestoid: a computational model for testing hypotheses about echinoid skeleton form and growth. J Theor Biol 285:113–125

    Article  PubMed  Google Scholar 

  • Alexander DE, Ghiold J (1980) The functional significance of the lunules in the sand dollar Mellita quinquiesperforata. Biol Bull 159:561–570

    Article  Google Scholar 

  • Almegaard H, Bagger A, Gravesen J, Jüttler B, Šír Z (2007) Surfaces with piecewise linear support functions over spherical triangulations. Proc Math Surf XII 4647:42–63

    Article  Google Scholar 

  • Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimisation considering stress response. Struct Multidiscipl Optim 45:801–814

    Article  Google Scholar 

  • Bagger A (2010) Plate shell structures of glass. Dissertation, University of Denmark

    Google Scholar 

  • Blandini L (2005) Structural use of adhesives in glass shells. Dissertation, Universität Stuttgar

    Google Scholar 

  • Bletzinger KU, Ramm E (1999) A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int J Space Struct 14:131–145

    Article  Google Scholar 

  • Breitenberger M, Blenzinger KU, Wüchner R (2013) Isogeometric layout optimization of shell structures using trimmed NURBS surfaces. In: Proceedings of World Congress on Structural and Multidisciplinary Optimization, Orlando, 19—24 May

    Google Scholar 

  • Chilton J (2000) Heinz Isler. The engineer’s contribution to contemporary architecture. Thomas Telford Ltd, Reston

    Google Scholar 

  • Deb K (2011) Multi-objective optimization using evolutionary algorithms. Kan Gal Rep 2011003:1–24

    Google Scholar 

  • Dimcic M, Knippers J (2011) Structural optimization of grid shells. In: Proceedings of The International Association for shell and spacial structures, London, 20—23 September

    Google Scholar 

  • Eble G (2004) The macroevolution of phenotypic integration. In: Pigliucci M, Perston K (eds) Phenotypic integration, studying the ecology and evolution of complex phenotypes. Oxford University Press, Oxford, pp 253–273

    Google Scholar 

  • Ellers O, Johnson AS, Moberg PE (1998) Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biol Bull 195:136–144

    Article  Google Scholar 

  • Fildhuth T, Lippert S, Knippers J (2012) Design and joint pattern optimisation of glass shells. In: Proceedings of The International Association for Shell and Spacial Structures, Seoul, 20—24 May

    Google Scholar 

  • Fildhuth T, Knippers J (2011) Geometrie und Tragverhalten von doppelt gekrümmten Ganzglasschalen aus kalt verformten Glaslaminaten. Stahlbau 80:31–44

    Article  Google Scholar 

  • Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3:1–16

    Article  Google Scholar 

  • Ghiold J (1979) Spine morphology and its significance in feeding and burrowing in the sand dollar Mellita quinquiesperforata (Echinodermata: Echinoidea). Bull Mar Sci 29:481–490

    Google Scholar 

  • Ghiold J (1982) Observations on the clypeasteroid Echinocyamus pusillus (O.F. Müller). J Exp Mar Biol Ecol 61:57–74

    Article  Google Scholar 

  • Goldberg WM (1992) The biology of reefs and reef organisms. The University of Chicago Press, Chicago

    Google Scholar 

  • Goodbody I (1960) The feeding mechanism in the sand dollar Mellita sexiesperforata (Leske). Biol Bull 119:80–86

    Article  Google Scholar 

  • Grossmann JN, Nebelsick JH (2013) Stereom differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In: Johnson C (ed) Echinoderms in a Changing World. Proceedings of the 13th International Echinoderm Conference, Tasmania. CRC Press, London, pp 97—104

    Google Scholar 

  • Grun T, Sievers D, Nebelsick JH (2014) Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy). Hist Biol 26:745–757

    Article  Google Scholar 

  • Grun T, Nebelsick JH (2015) Sneaky snails: how drillholes can affect paleontological analyses of the minute clypeasteroid echinoid Echinocyamus? In: Zamora S, Rábano I (eds) Progress in echinoderm paleobiology. Publicaciones del Instituto Geológico y Minero de España, Madrid, pp 71–73

    Google Scholar 

  • Gruber P, Jeronimidis G (2012) Has biomimetics arrived in architecture? Bioinspir Biomim 7:1–2

    Article  Google Scholar 

  • Herzog T, Natterer J, Schweitzer R (2003) Holzbau Atlas. Birkhäuser, Basel

    Book  Google Scholar 

  • Hyman LH (1955) The Invertebrates. Volume IV: Echinodermata. McGraw-Hill, New York

    Google Scholar 

  • Kier PM, Grant RE (1965) Echinoid distribution and habits, Key Largo Coral Reef Reserve, Florida. Smithsonian Inst 149:1–62

    Google Scholar 

  • Knippers J, Menges A, Gabler M, La Magna R, Waimer F, Reichert S, Schwinn T (2013) From nature to fabrication: biomimetic design principles for the production of complex spatial structures. In: Hesselgren L, Sharma S, Wallner J, Baldassini N, Bompas P, Raynaud J (eds) Advances in architectural geometry 2012. Springer, Wien, pp 107–122

    Chapter  Google Scholar 

  • Krieg OD, Schwinn T, Menges A, Li J, Knippers J, Schmitt A, Schwieger V (2015) Biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In: Block P, Knippers J, Mitra NJ, Wang W (eds) Advances in architectural geometry 2014. Springer, Cham, pp 109–125

    Google Scholar 

  • Krieg OD, Dierichs K, Reichert S, Schwinn T, Menges A (2011) Performative architectural morphology: Finger-joined plate structures integrating robotic manufacturing, biological principles and location-specific requirements. In: Gengnagel C, Kilian A, Palz N, Scheurer F (eds) Computational design modelling: proceedings of the design modelling symposium berlin 2011. Springer, Berlin, pp 259–266

    Chapter  Google Scholar 

  • La Magna R, Gabler M, Reichert S, Schwinn T, Waimer F, Menges A, Knippers J (2013) From nature to fabrication: biomimetic design principles for the production of complex spatial structures. Int J Space Struct 28:27–39

    Article  Google Scholar 

  • Lang A (1896) Text-book of comparative anatomy, volume 2. MacMillan and Co, London

    Google Scholar 

  • Lawrence JM, Herrera J, Cobb J (2004) Vertical posture of the clypeasteroid sand dollar Encope michelini. J Mar Biol Assoc UK 84:407–408

    Article  Google Scholar 

  • Li JM, Knippers J (2015) Pattern and form – their influence on segmental plate shells. In: Proceedings of The International Association for Shell and Spacial Structures, Amsterdam, 17—20 August

    Google Scholar 

  • Menges A (2013) Morphospaces of robotic fabrication. In: Brell-Çokcan S, Braumann J (eds) Robarch 2012: robotic fabrication in architecture, art and design. Springer, Wien, pp 28–47

    Google Scholar 

  • Mihaljević M, Jerjen I, Smith AB (2011) The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. Zootaxa 2983:21–38

    Google Scholar 

  • Millott N (ed) (1967) Echinoderm biology. Academic, New York

    Google Scholar 

  • Mitteroecker P, Huttegger SM (2009) The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theory 4:54–67

    Article  Google Scholar 

  • Mooi R (1986) Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides). Zoomorphology 106:212–223

    Article  Google Scholar 

  • Mooi R (1989) Living and fossil genera of the Clypeasteroida (Echinoidea, Echinodermata): an illustrated key and annotated checklist. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Mortensen T (1948) A monograph of the Echinoidea IV. CA Reitzel, Copenhagen

    Google Scholar 

  • Müller J (1854) Über den Bau der Echinodermen. Druckerei der Königlichen Akademie der Wissenschaft, Berlin

    Google Scholar 

  • Nebelsick JH, Dynowski JF, Grossmann JN, Tötzke C (2015) Echinoderms: hierarchically organized light weight skeletons. In: Hamm C (ed) Evolution of light weight structures. Analyses and technical applications. Springer, Dordrecht, pp 141–154

    Chapter  Google Scholar 

  • Nichols D (1962) Echinoderms. Hutchinson and Co, London

    Google Scholar 

  • Pearse JS, Pearse VB (1975) Growth zones in the echinoid skeleton. Amer Zool 15:731–753

    Article  Google Scholar 

  • Philippi U, Nachtigall W (1996) Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116:35–50

    Article  Google Scholar 

  • Ramm E, Bletzinger KU, Reitinger R (1993) Shape optimization of shell structures. Revue Européenne des Éléments 2:377–398

    Article  Google Scholar 

  • Raup DM (1959) Crystallography of echinoid calcite. J Geol 67:661–674

    Article  CAS  Google Scholar 

  • Raup DM (1968) Theoretical morphology of echinoid growth. J Paleo 42:50–63

    Google Scholar 

  • Schmitt A, Schwieger V (2015) Quality control of robotics made timber plates. In: Fédération Internationale Géometès, Sofia, 17—21 May

    Google Scholar 

  • Schultz H (2006) Sea urchins I: a guide to worldwide shallow water species, 3rd edn. Heinke and Peter Schultz, Hemdingen

    Google Scholar 

  • Schwinn T, Menges A (2015) Fabrication agency: Landesgartenschau Exhibition Hall. Archit Des 85:92–99

    Google Scholar 

  • Schwinn T, Krieg OD, Menges A (2014) Behavioral strategies: synthesizing design computation and robotic fabrication of lightweight timber plate structures. In: Proceedings of the 34th annual conference of the Association for Computer Aided Design in Architecture, Los Angeles, 23—25 October

    Google Scholar 

  • Schwinn T, Krieg OD, Menges A, Mihaylov B, Reichert S (2012) Machinic morphospaces: biomimetic design strategies for the computational exploration of robot constraint spaces for wood fabrication. In; Proceedings of the 32nd annual conference of the Association for Computer Aided Design in Architecture, San Francisco, 18—21 October

    Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221

    Article  Google Scholar 

  • Smith AB (1980) The structure and arrangement of echinoid tubercles. Philos Trans R Soc B 289:1–54

    Article  Google Scholar 

  • Smith AB (1984) Echinoid palaeobiology. George Allen and Unwin, London

    Google Scholar 

  • Smith AB, Ghiold J (1982) Roles for holes in sand dollars (Echinoidea): a review of Lunulae function and evolution. Paleobiology 8:242–253

    Article  Google Scholar 

  • Strathmann RR (1981) The role of spines in preventing structural damage to echinoid tests. Paleobiology 7:400–406

    Article  Google Scholar 

  • Telford M (1981) Hydrodynamic interpretation of sand dollar morphology. Bull Mar Sci 31:605–622

    Google Scholar 

  • Telford M (1985) Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105:114–124

    Article  Google Scholar 

  • Telford M, Mooi R, Ellers O (1985) A new model of podial deposit feeding in the sand dollar, Mellita quinquiesperforata (Leske): the sieve hypothesis challenged. Biol Bull 169:431–448

    Article  Google Scholar 

  • Timko PL (1976) Sand dollars as suspension feeders: a new description of feeding in Dendraster excentricus. Biol Bull 151:247–259

    Article  Google Scholar 

  • Veer FA, Wurm J, Hobbelman GJ (2003) The design, construction and validation of a structural glass dome. In: Proceedings of glass processing days, Tampere, 15—18 June

    Google Scholar 

  • Wang W, Liu Y (2009) A note on planar hexagonal meshes. In: Emiris IZ, Sottile F, Theobald T (eds) The IMA volumes in mathematics and its applications. Springer, New York, pp 221–233

    Google Scholar 

  • Wester T (1990) A geodesic dome-type based on pure plate action. Int J Space Struct 5:155–167

    Google Scholar 

  • Wester T (2002) Nature teaching structures. Int J Space Struct 17:135–147

    Article  Google Scholar 

  • Zachos LG (2009) A new computational growth model for sea urchin skeletons. J Theor Biol 259:646–657

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project A07. We also thank The Paleontological Society, The Gerace Research Centre, Hartmut Schultz (Scanning Electron Microscopy Lab, Department for Geosciences, University of Tübingen), Wolfgang Gerber (Photo Lab, Department for Geosciences, University of Tübingen), Ellen Struve (Applied Geosciences, University of Tübingen), Raouf Jemmali (German Aerospace Center, Stuttgart, Germany) and Rolf Pohmann (Max-Planck Institute for Biological Cybernetics, Tübingen, Germany). Thanks to the European Fund for Regional Development and the Cluster Forst und Holz Initiative. We also thank Theresa Jones for proof reading and Roland Halbe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias B. Grun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grun, T.B. et al. (2016). The Skeleton of the Sand Dollar as a Biological Role Model for Segmented Shells in Building Construction: A Research Review. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_11

Download citation

Publish with us

Policies and ethics