Advertisement

The Skeleton of the Sand Dollar as a Biological Role Model for Segmented Shells in Building Construction: A Research Review

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 8)

Abstract

Concrete double-curved shell constructions have been used in architectural design and building constructions since the beginning of the twentieth century. Although monolithic shells show a high stiffness as their geometry transfers loads through membrane forces, they have been mostly replaced by the more cost-efficient lattice systems. As lattice systems are covered by planar glass or metal panes, they neither reach the structural efficiency of monolithic shells, nor is their architectural elegance reflected in a continuous curvature. The shells of sand dollars’ – highly adapted sea urchins – combine a modular and multi-plated shell with a flexible, curved as well as smooth design of a monolithic construction. The single elements of the sand dollars’ skeleton are connected by calcite protrusions and can be additionally supported by organic fibres. The structural efficiency of the sea urchin’s skeleton and the principles behind them can be used for innovations in engineering sciences and architectural design while, at the same time, they can be used to illustrate the biological adaptations of these ecologically important animals within their environments. The structure of the sand dollar’s shell is investigated using modern as well as established imaging techniques such as x-ray micro-computed tomography (μCT), scanning electron microscopy and various optical imaging techniques. 3D models generated by μCT scans are the basis for Finite Element Analysis of the sand dollar’s shell to identify possible structural principles and to analyse their structural behaviour. The gained insights of the sand dollar’s mechanical properties can then be used for improving the state-of-the-art techniques of engineering sciences and architectural design.

Keywords

Echinoids Sand dollar Clypeasteroids Role model Internal support Segmented shell Multi-plated shell Double-curved shell Hierarchical organization Functional morphology Biomimetic Monolithic shell Buttress Pillars Research pavilion Structural principles Biomimetic review 

Notes

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project A07. We also thank The Paleontological Society, The Gerace Research Centre, Hartmut Schultz (Scanning Electron Microscopy Lab, Department for Geosciences, University of Tübingen), Wolfgang Gerber (Photo Lab, Department for Geosciences, University of Tübingen), Ellen Struve (Applied Geosciences, University of Tübingen), Raouf Jemmali (German Aerospace Center, Stuttgart, Germany) and Rolf Pohmann (Max-Planck Institute for Biological Cybernetics, Tübingen, Germany). Thanks to the European Fund for Regional Development and the Cluster Forst und Holz Initiative. We also thank Theresa Jones for proof reading and Roland Halbe.

References

  1. Abou Chakra M, Stone JR (2011) Holotestoid: a computational model for testing hypotheses about echinoid skeleton form and growth. J Theor Biol 285:113–125CrossRefPubMedGoogle Scholar
  2. Alexander DE, Ghiold J (1980) The functional significance of the lunules in the sand dollar Mellita quinquiesperforata. Biol Bull 159:561–570CrossRefGoogle Scholar
  3. Almegaard H, Bagger A, Gravesen J, Jüttler B, Šír Z (2007) Surfaces with piecewise linear support functions over spherical triangulations. Proc Math Surf XII 4647:42–63CrossRefGoogle Scholar
  4. Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimisation considering stress response. Struct Multidiscipl Optim 45:801–814CrossRefGoogle Scholar
  5. Bagger A (2010) Plate shell structures of glass. Dissertation, University of DenmarkGoogle Scholar
  6. Blandini L (2005) Structural use of adhesives in glass shells. Dissertation, Universität StuttgarGoogle Scholar
  7. Bletzinger KU, Ramm E (1999) A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int J Space Struct 14:131–145CrossRefGoogle Scholar
  8. Breitenberger M, Blenzinger KU, Wüchner R (2013) Isogeometric layout optimization of shell structures using trimmed NURBS surfaces. In: Proceedings of World Congress on Structural and Multidisciplinary Optimization, Orlando, 19—24 MayGoogle Scholar
  9. Chilton J (2000) Heinz Isler. The engineer’s contribution to contemporary architecture. Thomas Telford Ltd, RestonGoogle Scholar
  10. Deb K (2011) Multi-objective optimization using evolutionary algorithms. Kan Gal Rep 2011003:1–24Google Scholar
  11. Dimcic M, Knippers J (2011) Structural optimization of grid shells. In: Proceedings of The International Association for shell and spacial structures, London, 20—23 SeptemberGoogle Scholar
  12. Eble G (2004) The macroevolution of phenotypic integration. In: Pigliucci M, Perston K (eds) Phenotypic integration, studying the ecology and evolution of complex phenotypes. Oxford University Press, Oxford, pp 253–273Google Scholar
  13. Ellers O, Johnson AS, Moberg PE (1998) Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biol Bull 195:136–144CrossRefGoogle Scholar
  14. Fildhuth T, Lippert S, Knippers J (2012) Design and joint pattern optimisation of glass shells. In: Proceedings of The International Association for Shell and Spacial Structures, Seoul, 20—24 MayGoogle Scholar
  15. Fildhuth T, Knippers J (2011) Geometrie und Tragverhalten von doppelt gekrümmten Ganzglasschalen aus kalt verformten Glaslaminaten. Stahlbau 80:31–44CrossRefGoogle Scholar
  16. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3:1–16CrossRefGoogle Scholar
  17. Ghiold J (1979) Spine morphology and its significance in feeding and burrowing in the sand dollar Mellita quinquiesperforata (Echinodermata: Echinoidea). Bull Mar Sci 29:481–490Google Scholar
  18. Ghiold J (1982) Observations on the clypeasteroid Echinocyamus pusillus (O.F. Müller). J Exp Mar Biol Ecol 61:57–74CrossRefGoogle Scholar
  19. Goldberg WM (1992) The biology of reefs and reef organisms. The University of Chicago Press, ChicagoGoogle Scholar
  20. Goodbody I (1960) The feeding mechanism in the sand dollar Mellita sexiesperforata (Leske). Biol Bull 119:80–86CrossRefGoogle Scholar
  21. Grossmann JN, Nebelsick JH (2013) Stereom differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In: Johnson C (ed) Echinoderms in a Changing World. Proceedings of the 13th International Echinoderm Conference, Tasmania. CRC Press, London, pp 97—104Google Scholar
  22. Grun T, Sievers D, Nebelsick JH (2014) Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy). Hist Biol 26:745–757CrossRefGoogle Scholar
  23. Grun T, Nebelsick JH (2015) Sneaky snails: how drillholes can affect paleontological analyses of the minute clypeasteroid echinoid Echinocyamus? In: Zamora S, Rábano I (eds) Progress in echinoderm paleobiology. Publicaciones del Instituto Geológico y Minero de España, Madrid, pp 71–73Google Scholar
  24. Gruber P, Jeronimidis G (2012) Has biomimetics arrived in architecture? Bioinspir Biomim 7:1–2CrossRefGoogle Scholar
  25. Herzog T, Natterer J, Schweitzer R (2003) Holzbau Atlas. Birkhäuser, BaselCrossRefGoogle Scholar
  26. Hyman LH (1955) The Invertebrates. Volume IV: Echinodermata. McGraw-Hill, New YorkGoogle Scholar
  27. Kier PM, Grant RE (1965) Echinoid distribution and habits, Key Largo Coral Reef Reserve, Florida. Smithsonian Inst 149:1–62Google Scholar
  28. Knippers J, Menges A, Gabler M, La Magna R, Waimer F, Reichert S, Schwinn T (2013) From nature to fabrication: biomimetic design principles for the production of complex spatial structures. In: Hesselgren L, Sharma S, Wallner J, Baldassini N, Bompas P, Raynaud J (eds) Advances in architectural geometry 2012. Springer, Wien, pp 107–122CrossRefGoogle Scholar
  29. Krieg OD, Schwinn T, Menges A, Li J, Knippers J, Schmitt A, Schwieger V (2015) Biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In: Block P, Knippers J, Mitra NJ, Wang W (eds) Advances in architectural geometry 2014. Springer, Cham, pp 109–125Google Scholar
  30. Krieg OD, Dierichs K, Reichert S, Schwinn T, Menges A (2011) Performative architectural morphology: Finger-joined plate structures integrating robotic manufacturing, biological principles and location-specific requirements. In: Gengnagel C, Kilian A, Palz N, Scheurer F (eds) Computational design modelling: proceedings of the design modelling symposium berlin 2011. Springer, Berlin, pp 259–266CrossRefGoogle Scholar
  31. La Magna R, Gabler M, Reichert S, Schwinn T, Waimer F, Menges A, Knippers J (2013) From nature to fabrication: biomimetic design principles for the production of complex spatial structures. Int J Space Struct 28:27–39CrossRefGoogle Scholar
  32. Lang A (1896) Text-book of comparative anatomy, volume 2. MacMillan and Co, LondonGoogle Scholar
  33. Lawrence JM, Herrera J, Cobb J (2004) Vertical posture of the clypeasteroid sand dollar Encope michelini. J Mar Biol Assoc UK 84:407–408CrossRefGoogle Scholar
  34. Li JM, Knippers J (2015) Pattern and form – their influence on segmental plate shells. In: Proceedings of The International Association for Shell and Spacial Structures, Amsterdam, 17—20 AugustGoogle Scholar
  35. Menges A (2013) Morphospaces of robotic fabrication. In: Brell-Çokcan S, Braumann J (eds) Robarch 2012: robotic fabrication in architecture, art and design. Springer, Wien, pp 28–47Google Scholar
  36. Mihaljević M, Jerjen I, Smith AB (2011) The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. Zootaxa 2983:21–38Google Scholar
  37. Millott N (ed) (1967) Echinoderm biology. Academic, New YorkGoogle Scholar
  38. Mitteroecker P, Huttegger SM (2009) The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theory 4:54–67CrossRefGoogle Scholar
  39. Mooi R (1986) Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides). Zoomorphology 106:212–223CrossRefGoogle Scholar
  40. Mooi R (1989) Living and fossil genera of the Clypeasteroida (Echinoidea, Echinodermata): an illustrated key and annotated checklist. Smithsonian Institution Press, Washington, DCGoogle Scholar
  41. Mortensen T (1948) A monograph of the Echinoidea IV. CA Reitzel, CopenhagenGoogle Scholar
  42. Müller J (1854) Über den Bau der Echinodermen. Druckerei der Königlichen Akademie der Wissenschaft, BerlinGoogle Scholar
  43. Nebelsick JH, Dynowski JF, Grossmann JN, Tötzke C (2015) Echinoderms: hierarchically organized light weight skeletons. In: Hamm C (ed) Evolution of light weight structures. Analyses and technical applications. Springer, Dordrecht, pp 141–154CrossRefGoogle Scholar
  44. Nichols D (1962) Echinoderms. Hutchinson and Co, LondonGoogle Scholar
  45. Pearse JS, Pearse VB (1975) Growth zones in the echinoid skeleton. Amer Zool 15:731–753CrossRefGoogle Scholar
  46. Philippi U, Nachtigall W (1996) Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116:35–50CrossRefGoogle Scholar
  47. Ramm E, Bletzinger KU, Reitinger R (1993) Shape optimization of shell structures. Revue Européenne des Éléments 2:377–398CrossRefGoogle Scholar
  48. Raup DM (1959) Crystallography of echinoid calcite. J Geol 67:661–674CrossRefGoogle Scholar
  49. Raup DM (1968) Theoretical morphology of echinoid growth. J Paleo 42:50–63Google Scholar
  50. Schmitt A, Schwieger V (2015) Quality control of robotics made timber plates. In: Fédération Internationale Géometès, Sofia, 17—21 MayGoogle Scholar
  51. Schultz H (2006) Sea urchins I: a guide to worldwide shallow water species, 3rd edn. Heinke and Peter Schultz, HemdingenGoogle Scholar
  52. Schwinn T, Menges A (2015) Fabrication agency: Landesgartenschau Exhibition Hall. Archit Des 85:92–99Google Scholar
  53. Schwinn T, Krieg OD, Menges A (2014) Behavioral strategies: synthesizing design computation and robotic fabrication of lightweight timber plate structures. In: Proceedings of the 34th annual conference of the Association for Computer Aided Design in Architecture, Los Angeles, 23—25 OctoberGoogle Scholar
  54. Schwinn T, Krieg OD, Menges A, Mihaylov B, Reichert S (2012) Machinic morphospaces: biomimetic design strategies for the computational exploration of robot constraint spaces for wood fabrication. In; Proceedings of the 32nd annual conference of the Association for Computer Aided Design in Architecture, San Francisco, 18—21 OctoberGoogle Scholar
  55. Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221CrossRefGoogle Scholar
  56. Smith AB (1980) The structure and arrangement of echinoid tubercles. Philos Trans R Soc B 289:1–54CrossRefGoogle Scholar
  57. Smith AB (1984) Echinoid palaeobiology. George Allen and Unwin, LondonGoogle Scholar
  58. Smith AB, Ghiold J (1982) Roles for holes in sand dollars (Echinoidea): a review of Lunulae function and evolution. Paleobiology 8:242–253CrossRefGoogle Scholar
  59. Strathmann RR (1981) The role of spines in preventing structural damage to echinoid tests. Paleobiology 7:400–406CrossRefGoogle Scholar
  60. Telford M (1981) Hydrodynamic interpretation of sand dollar morphology. Bull Mar Sci 31:605–622Google Scholar
  61. Telford M (1985) Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105:114–124CrossRefGoogle Scholar
  62. Telford M, Mooi R, Ellers O (1985) A new model of podial deposit feeding in the sand dollar, Mellita quinquiesperforata (Leske): the sieve hypothesis challenged. Biol Bull 169:431–448CrossRefGoogle Scholar
  63. Timko PL (1976) Sand dollars as suspension feeders: a new description of feeding in Dendraster excentricus. Biol Bull 151:247–259CrossRefGoogle Scholar
  64. Veer FA, Wurm J, Hobbelman GJ (2003) The design, construction and validation of a structural glass dome. In: Proceedings of glass processing days, Tampere, 15—18 JuneGoogle Scholar
  65. Wang W, Liu Y (2009) A note on planar hexagonal meshes. In: Emiris IZ, Sottile F, Theobald T (eds) The IMA volumes in mathematics and its applications. Springer, New York, pp 221–233Google Scholar
  66. Wester T (1990) A geodesic dome-type based on pure plate action. Int J Space Struct 5:155–167Google Scholar
  67. Wester T (2002) Nature teaching structures. Int J Space Struct 17:135–147CrossRefGoogle Scholar
  68. Zachos LG (2009) A new computational growth model for sea urchin skeletons. J Theor Biol 259:646–657CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany
  2. 2.Institute for Structural Mechanics (IBB)University of StuttgartStuttgartGermany
  3. 3.Institute for Computational Design (ICD)University of StuttgartStuttgartGermany
  4. 4.Institute of Building Structures and Structural Design (ITKE)University of StuttgartStuttgartGermany

Personalised recommendations