Skip to main content

The Morality Machine: Tracking Moral Values in Tweets

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9897)

Abstract

This paper introduces The Morality Machine, a system that tracks ethical sentiment in Twitter discussions. Empirical approaches to ethics are rare, and to our knowledge this system is the first to take a machine learning approach. It is based on Moral Foundations Theory, a framework of moral values that are assumed to be universal. Carefully handcrafted keyword dictionaries for Moral Foundations Theory exist, but experiments demonstrate that models that do not leverage these have similar or superior performance, thus proving the value of a more pure machine learning approach.

Keywords

  • Text classification
  • Moral values
  • Social technologies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46349-0_3
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-46349-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)

    Google Scholar 

  2. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of Twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics (2011)

    Google Scholar 

  3. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media, Sebastopol (2009)

    MATH  Google Scholar 

  4. Bond, J.: It aint over till the fat lady sings. Sens-Public (2012). http://www.sens-public.org/article979.html

  5. Clifford, S., Jerit, J.: How words do the work of politics: moral foundations theory and the debate over stem cell research. J. Politics 75(03), 659–671 (2013)

    CrossRef  Google Scholar 

  6. Dehghani, M., Sagae, K., Sachdeva, S., Gratch, J.: Linguistic analysis of the debate over the construction of the Ground Zero Mosque. J. Inform. Technol. Politics 11, 1–14 (2014)

    CrossRef  Google Scholar 

  7. Freelon, D.: On the interpretation of digital trace data in communication and social computing research. J. Broadcast. Electron. Media 58(1), 59–75 (2014)

    CrossRef  Google Scholar 

  8. Graham, J., Haidt, J., Koleva, S., Motyl, M., Iyer, R., Wojcik, S.P., Ditto, P.H.: Moral foundations theory: the pragmatic validity of moral pluralism. Adv. Exp. Soc. Psychol. 47, 55–130 (2013)

    CrossRef  Google Scholar 

  9. Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96(5), 1029 (2009)

    CrossRef  Google Scholar 

  10. Grauwe, P.: The eurozone as a morality play. Intereconomics Rev. Eur. Econ. Policy 46(5), 230–231 (2011)

    CrossRef  Google Scholar 

  11. Haidt, J.: The righteous mind: why good people are divided by politics and religion. Vintage, New York (2012)

    Google Scholar 

  12. Haidt, J., Joseph, C.: Intuitive ethics: how innately prepared intuitions generate culturally variable virtues. Daedalus 133(4), 55–66 (2004)

    CrossRef  Google Scholar 

  13. Lazarou, A.: Greece: The many faces of Yanis Varoufakis. Green Left Weekly (104) (2015)

    Google Scholar 

  14. Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Life in the network: the coming age of computational social science. Science 323(5915), 721 (2009). (New York, NY)

    CrossRef  Google Scholar 

  15. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  16. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world learning problem: the CoIL Challenge 2000. Mach. Learn. 57(1), 177–195 (2004)

    CrossRef  MATH  Google Scholar 

  17. Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Patil, S., Flammini, A., Menczer, F.: Truthy: mapping the spread of astroturf in microblog streams. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 249–252. ACM (2011)

    Google Scholar 

  18. Sagi, E., Dehghani, M.: Measuring moral rhetoric in text. Soc. Sci. Comput. Rev. 32(2), 132–144 (2014)

    CrossRef  Google Scholar 

  19. Saif, H., Fernández, M., Alani, H.: Automatic stopword generation using contextual semantics for sentiment analysis of Twitter. In: CEUR Workshop Proceedings, vol. 1272 (2014)

    Google Scholar 

  20. Suhler, C.L., Churchland, P.: Can innate, modular foundations explain morality? Challenges for Haidt’s moral foundations theory. J. Cogn. Neurosci. 9, 2103–2116 (2011)

    CrossRef  Google Scholar 

  21. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    CrossRef  Google Scholar 

  22. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. ICWSM 10, 178–185 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Teernstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Teernstra, L., van der Putten, P., Noordegraaf-Eelens, L., Verbeek, F. (2016). The Morality Machine: Tracking Moral Values in Tweets. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)