A First Step Toward Quantifying the Climate’s Information Production over the Last 68,000 Years

  • Joshua Garland
  • Tyler R. Jones
  • Elizabeth Bradley
  • Ryan G. James
  • James W. C. White
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9897)

Abstract

Paleoclimate records are extremely rich sources of information about the past history of the Earth system. We take an information-theoretic approach to analyzing data from the WAIS Divide ice core, the longest continuous and highest-resolution water isotope record yet recovered from Antarctica. We use weighted permutation entropy to calculate the Shannon entropy rate from these isotope measurements, which are proxies for a number of different climate variables, including the temperature at the time of deposition of the corresponding layer of the core. We find that the rate of information production in these measurements reveals issues with analysis instruments, even when those issues leave no visible traces in the raw data. These entropy calculations also allow us to identify a number of intervals in the data that may be of direct relevance to paleoclimate interpretation, and to form new conjectures about what is happening in those intervals—including periods of abrupt climate change.

References

  1. 1.
  2. 2.
    Alley, R., et al.: Abrupt climate change. Science 299, 2005–2010 (2003)CrossRefGoogle Scholar
  3. 3.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)CrossRefGoogle Scholar
  4. 4.
    Bollt, E., Stanford, T., Lai, Y.C., Życzkowski, K.: What symbolic dynamics do we get with a misplaced partition?: on the validity of threshold crossings analysis of chaotic time-series. Physica D 154(3), 259–286 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Buizert, C.: The WAIS divide deep ice core WD2014 chronology–Part 1: methane synchronization (6831 ka BP) and the gas age-ice age difference. Clim. Past 11, 153–173 (2015)CrossRefGoogle Scholar
  6. 6.
    Cao, Y., Tung, W., Gao, J., Protopopescu, V., Hively, L.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70(4), 046217 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dakos, V., et al.: Slowing down as an early warning signal for abrupt climate change. Proc. Nat. Acad. Sci. 105(38), 14308–14312 (2008)CrossRefGoogle Scholar
  8. 8.
    Dansgaard, W.: Stable isotopes in precipitation. Tellus 16, 436–447 (1964)CrossRefGoogle Scholar
  9. 9.
    Dansgaard, W., et al.: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993)CrossRefGoogle Scholar
  10. 10.
    Dansgaard, W., Johnsen, S., Clausen, H., Gundestrup, N.: Stable isotope glaciology. Medelelsser om Gronland 197, 1–53 (1973)Google Scholar
  11. 11.
    Dansgaard, W., White, J., Johnsen, S.: The abrupt termination of the younger Dryas climate event. Nature 339, 532–534 (1989)CrossRefGoogle Scholar
  12. 12.
    Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E 87(2), 022911 (2013)CrossRefGoogle Scholar
  13. 13.
    Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lenton, T., et al.: Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Philos. Trans. R. Soc. Lond. A: Math. Phy. Eng. Sci. 370(1962), 1185–1204 (2012)CrossRefGoogle Scholar
  15. 15.
    Mantegna, R., Buldyrev, S., Goldberger, A., Havlin, S., Peng, C., Simons, M., Stanley, H.: Linguistic features of noncoding DNA sequences. Phys. Rev. Lett. 73(23), 3169–3172 (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Petit, J., et al.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)CrossRefGoogle Scholar
  17. 17.
    Scheffer, M., et al.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)CrossRefGoogle Scholar
  18. 18.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  19. 19.
    Shannon, C.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30(1), 50–64 (1951)CrossRefMATHGoogle Scholar
  20. 20.
    Sigl, M., et al.: The WAIS Divide deep ice core WD2014 chronology–part 2: Annual-layer counting (031 ka BP). Clim. Past 12, 769–786 (2016)CrossRefGoogle Scholar
  21. 21.
    WAIS Divide Project Members: Onset of deglacial warming in west antarctica driven by local orbital forcing. Nature 500, 440–444 (2013)Google Scholar
  22. 22.
    WAIS Divide Project Members: Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015)CrossRefGoogle Scholar
  23. 23.
    White, J., et al.: Abrupt impacts of climate change: Anticipating surprises. In: EGU General Assembly Conference Abstracts, vol. 16, p. 17028 (2014)Google Scholar
  24. 24.
    Winstrup, M., et al.: An automated approach for annual layer counting in ice cores. Clim. Past 8, 1881–1895 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Joshua Garland
    • 1
    • 3
  • Tyler R. Jones
    • 2
  • Elizabeth Bradley
    • 1
    • 3
  • Ryan G. James
    • 4
  • James W. C. White
    • 2
  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderUSA
  2. 2.University of Colorado, INSTAARBoulderUSA
  3. 3.Santa Fe InstituteSanta FeUSA
  4. 4.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations