Skip to main content

DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XV (IDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Included in the following conference series:

Abstract

Ubiquitous network data has given rise to diverse graph mining and analytical methods. One of the graph mining domains is anomaly detection in dynamic graphs, which can be employed for fraud detection, network intrusion detection, suspicious behaviour identification, etc. Most existing methods search for anomalies rather on the global level of the graphs. In this work, we propose a new anomaly detection and explanation algorithm for dynamic graphs. The algorithm searches for anomaly patterns in the form of predictive rules that enable us to examine the evolution of dynamic graphs on the level of subgraphs. Specifically, these patterns are able to capture addition and deletion of vertices and edges, and relabeling of vertices and edges. In addition, the algorithm outputs normal patterns that serve as an explanation for the anomaly patterns. The algorithm has been evaluated on two real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akoglu, L., Tong, H., Koutra., D.: Graph-based anomaly detection and description: a survey. DAMI 28(4) (2014)

    Google Scholar 

  2. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (‘Comet’) communities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), pp. 271–283. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06605-9_23

    Chapter  Google Scholar 

  3. Cohen, W.W.: Enron Email Dataset. Web, Accessed 3 May 2016. www.cs.cmu.edu/~./enron/

  4. Heard, N.A., et al.: Bayesian anomaly detection methods for social networks. Ann. Appl. Stat. 4, 645–662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Koutra, D., Papalexakis, E., Faloutsos, C.: Tensorsplat: spotting latent anomalies in time. In: 16th Panhellenic Conference on Informatics (PCI) (2012)

    Google Scholar 

  6. Mao, H.-H., Wu, C.-J., Papalexakis, E.E., Faloutsos, C., Lee, K.-C., Kao, T.-C.: MalSpot: multi2 malicious network behavior patterns analysis. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 1–14. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06608-0_1

    Chapter  Google Scholar 

  7. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse parallelizable tensor decompositions. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), pp. 521–536. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33460-3_39

    Chapter  Google Scholar 

  8. Priebe, C.E., et al.: Scan Statistics on Enron Graphs. Web, Accessed 3 2016. http://www.cis.jhu.edu/~parky/Enron

  9. Rayana, S., Akoglu, L.: Less is more: building selective anomaly ensembles (with application to event detection in temporal graphs). In: SIAM SDM, Vancouver, BC, Canada (2015)

    Google Scholar 

  10. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: SIGKDD, Philadelphia, PA, pp. 374–383 (2006)

    Google Scholar 

  11. Vaculík, K., Nezvalová, L., Popelínský, L.: Educational data mining for analysis of students’ solutions. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014. LNCS (LNAI), pp. 150–161. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10554-3_14

    Google Scholar 

  12. Vaculík, K.: A versatile algorithm for predictive graph rule mining. In: Proceedings ITAT 2015: Information Technologies - Applications and Theory, pp. 51–58. Prague (2015). CEUR-WS.org

  13. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE ICDM 2002. Washington, DC, USA (2002)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the IDA reviewers for valuable comments and suggestions. We would also like to thank Jan Ramon for helpful discussion on anomaly detection in graphs. This work has been partially supported by Faculty of Informatics, Masaryk University, Brno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Vaculík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Vaculík, K., Popelínský, L. (2016). DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics