Skip to main content

Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

High temperature response (HTR) or heat stress response (HSR) is a highly conserved phenomenon, which involves complex networks among different crop species. Heat stress usually results in protein dysfunction by improper folding of its linear amino acid chains to non-native proteins. This leads to unfavourable interactions and subsequent protein aggregation. To tackle this, plants have developed molecular chaperone machinery to maintain high quality proteins in the cell. This is governed by increasing the level of pre-existing molecular chaperones and by expressing additional chaperones through signalling mechanism. Dissecting the molecular mechanism by which plants counter heat stress and identification of important molecules involved are of high priority. This could help in the development of plants with improved heat stress tolerance through advanced genomics and genetic engineering approaches. Owing to this reason molecular chaperones/Heat shock proteins (Hsps) are considered as potential candidates to address the issue of heat stress. In this chapter, recent progress on systematic analyses of heat shock proteins, their classification and role in plant response to heat stress along with an overview of genomic and transgenic approaches to overcome the issue, are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

HSE:

heat-shock element

HSF:

heat shock factor

HSPs:

heat shock proteins

HSR:

heat stress response

HTR:

high temperature response

References

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Article  CAS  PubMed  Google Scholar 

  • Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125:1912–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A (2001) Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperones 6:219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine SM, Cherian AV, Syamaladevi DP, Subramonian N (2015a) Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in the formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in response to drought stress. Plant Cell Physiol 56:2368–2380

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Subramonian N (2015b) Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Sci 232:23–34

    Article  CAS  PubMed  Google Scholar 

  • Baniwal SK, Chan KY, Scharf KD, Nover L (2007) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem 282:3605–3613

    Article  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the Hsp70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the Cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Huang PS, Lin HR, Lu CH (2007a) Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol 48:1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Chang HC, Tang YC, Hayer-Hartl M, Hartl FU (2007b) SnapShot: molecular chaperones, Part I. Cell 128:212

    Article  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P (2013) A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One 8:e79577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhong DB, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LT, Hamada S, Fujiwara M, Zhu TH, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K (2010) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185–196

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Choi YJ (2009) A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett 31:597–606

    Article  CAS  PubMed  Google Scholar 

  • Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R (2015) A highly charged region in the middle domain of plant endoplasmic reticulum (ER) localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. J Exp Bot 66:113–124

    Article  CAS  PubMed  Google Scholar 

  • Crone D, Rueda J, Martin KL, Hamilton DA, Mascarenhas JP (2001) The differential expression of a heat shock promoter in floral and reproductive tissues. Plant Cell Environ 24:869–874

    Article  CAS  Google Scholar 

  • Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 67:363–373

    Article  CAS  PubMed  Google Scholar 

  • Driedonks N, Xu JM, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferradini N, Iannacone R, Capomaccio S, Metelli A, Armentano N, Semeraro L, Cellini F, Veronesi F, Rosellini D (2015) Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants. PLoS One 10:e0126051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fragkostefanakis S, Roth S, Schleiff E, Scharf KD (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38:1881–1895

    Article  CAS  PubMed  Google Scholar 

  • Freeman J, Sparks CA, West J, Shewry PR, Jones HD (2011) Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat. Plant Biotechnol J 9:788–796

    Article  CAS  PubMed  Google Scholar 

  • Frova C, Gorla MS (1993) Quantitative expression of maize HSPs: genetic dissection and association with thermotolerance. Theor Appl Genet 86:213–220

    CAS  PubMed  Google Scholar 

  • Garg D, Sareen S, Dalal S, Tiwari R, Singh R (2012) Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust J Crop Sci 6:1516

    CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Mogk A, Ben Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96:13732–13737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong BH, Yi J, Wu J, Sui JJ, Khan MA, Wu Z, Zhong XH, Seng SS, He JN, Yi MF (2014) LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Rep 33:1519–1533

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10:539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He ZS, Xie R, Wang YZ, Zou HS, Zhu JB, Yu GQ (2008) Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochimica Et Biophysica Sinica 40:209–216

    Article  CAS  PubMed  Google Scholar 

  • Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, Vandervies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  CAS  PubMed  Google Scholar 

  • Herrenkohl LR, Politch JA (1978) Effects of prenatal stress on the estrous cycle of female offspring as adults. Experientia 34:1240–1241

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Ohama N, Ishikawa T, Katori T, Shimura A, Kusakabe K, Yamaguchi-Shinozaki K, Ishida J, Tanaka M, Seki M, Shinozaki K, Sakata Y, Hayashi T, Taji T (2013) HsfA1d, a protein identified via FOX hunting using Thellungiella salsuginea cDNAs improves heat tolerance by regulating heat- stress- responsive gene expression. Mol Plant 6:411–422

    Article  CAS  PubMed  Google Scholar 

  • Jiang CH, Xu JY, Zhang H, Zhang X, Shi JL, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Article  CAS  PubMed  Google Scholar 

  • Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci U S A 110:14474–14479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  PubMed  Google Scholar 

  • Keeler SJ, Boettger CM, Haynes JG, Kuches KA, Johnson MM, Thureen DL, Keeler CL, Kitto SL (2000) Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol 123:1121–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr RA (2007) Global warming is changing the world. Science 316:188–190

    Article  CAS  PubMed  Google Scholar 

  • Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis plants. PLoS One 8:e54418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34:371–377

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Xu ZY, Hwang I (2013) AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep 32:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Kong FY, Deng YS, Zhou B, Wang GD, Wang Y, Meng QW (2014) A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J Exp Bot 65:143–158

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang NT, Ha PTT, Tru PC, Toan TB, Buu BC, Cho YC (2015) Breeding for heat tolerance rice based on marker-assisted backcrosing in Vietnam. Plant Breed Biotechnol 3:274–281

    Article  Google Scholar 

  • Lavania D, Dhingra A, Siddiqui MH, Al-Whaibi MH, Grover A (2015) Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiol Biochem 86:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YRJ, Nagao RT, Key JL (1994) A Soybean 101-Kd heat-shock protein complements a yeast Hsp104 deletion mutant in acquiring thermotolerance. Plant Cell 6:1889–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1-and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:10270–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yun HS, Kwon C (2012) Molecular communications between plant heat shock responses and disease resistance. Mol Cells 34:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW, Cha JY, Mun JY, Lee BH, Kim YG, Lee SH (2015) Heterologous expression of Mshsp23, a Medicago Sativa small heat shock protein, enhances heat stress tolerance in creeping bentgrass. J Anim Plant Sci 25:884–891

    Google Scholar 

  • Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Zhang LL, Wang AX, Xu XY, Li JF (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from Tomato, confers increased thermotolerance and salt hypersensitivity in Germination in transgenic Arabidopsis. PLoS One 8:e54880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu DL, Zhang XX, Cheng YX, Takano T, Liu SK (2006) rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem 44:380–386

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) Thecalmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Qin QL, Zhang Z, Peng RH, Xiong AS, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42:16–21

    Article  PubMed  Google Scholar 

  • Mahesh U, Mamidala P, Rapolu S, Aragao FJL, Souza MT, Rao PJM, Kirti PB, Nanna RS (2013) Constitutive overexpression of small HSP24.4 gene in transgenic tomato conferring tolerance to high-temperature stress. Mol Breed 32:687–697

    Article  CAS  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  PubMed  Google Scholar 

  • Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:53–64

    Article  CAS  PubMed  Google Scholar 

  • Matsuura H, Takenami S, Kubo Y, Ueda K, Ueda A, Yamaguchi M, Hirata K, Demura T, Kanaya S, Kato K (2013) A computational and experimental approach reveals that the 5′-Proximal region of the 5′-UTR has a Cis-regulatory signature responsible for heat stress-regulated mRNA translation in Arabidopsis. Plant Cell Physiol 54:474–483

    Article  CAS  PubMed  Google Scholar 

  • Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A (2010) Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol Biol 72:191–203

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Mohammad BA, Ibrahim AM, Hays D, Ristic Z (2008) Texas Plant Protection Association conferences (TPPA), Dec. 3–4, 2008, College Station, TX, USA

    Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999) Delayed recovery of beta-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat-stressed transgenic Nicotiana plumbaginifolia. Plant Cell Rep 19:96–100

    Article  CAS  Google Scholar 

  • Mu CJ, Zhang SJ, Yu GZ, Chen N, Li XF (2013) Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 8:e82264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Napolitano EW, Pachter JS, Liem RKH (1987) Intracellular-distribution of mammalian stress proteins – effects of cytoskeletal-specific agents. J Biol Chem 262:1493–1504

    CAS  PubMed  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    CAS  PubMed  Google Scholar 

  • Nollen EAA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115:2809–2816

    CAS  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM, Hong CB (2002) Class I small heat-shock protein gives thermotolerance in tobacco. J Plant Physiol 159:25–30

    Article  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Prandl R, Hinderhofer K, Eggers-Schumacher G, Schoffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258:269–278

    Article  CAS  PubMed  Google Scholar 

  • Proveniers MCG, van Zanten M (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci 18:59–64

    Article  CAS  PubMed  Google Scholar 

  • Qi YC, Wang HJ, Zou Y, Liu C, Liu YQ, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Chen J, Liu YF, Yang LL, Li WP, Zhang LM (2014) Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Genet Mol Res 13:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GB, Das KP, Petrash JM, Surewicz WK (2000) Temperature-dependent chaperone activity and structural properties of human alpha A- and alpha B-crystallins. J Biol Chem 275:4565–4570

    Article  CAS  PubMed  Google Scholar 

  • Reddy RA, Kumar B, Reddy PS, Mishra RN, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK (2009) Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: Interlinking oxidative and heat-stress responses. J Plant Physiol 166:1646–1659

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakrati A, Sopory SK, Reddy MK (2011) Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 474:29–38

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Kishor PBK, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in Barley: its implications in drought stress response and seed development. PLoS One 9:e89125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy PS, Sharma KK, Vadez V, Reddy MK (2015) Molecular cloning and differential expression of cytosolic class I small Hsp gene family in Pennisetum glaucum (L.). Appl Biochem Biotechnol 176:598–612

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, White SJ, Zhou Y, Muralidharan M, Elthon TE (2005) Altered gene expression in plants with constitutive expression of a mitochondrial small heat shock protein suggests the involvement of retrograde regulation in the heat stress response. Physiol Plant 123:435–444

    Article  CAS  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30:753–763

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-Munoz S, Gomez-Anduro G, Delgado-Sanchez P, Rodriguez-Kessler M, Jimenez-Bremont JF (2012) The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana. Int J Mol Sci 13:10154–10175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92

    Article  CAS  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat- shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Santacruz H, Vriz S, Angelier N (1997) Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev Genet 21:223–233

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  CAS  PubMed  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat-shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Schippers JHM, Welker A, Mieulet D, Guiderdoni E, Mueller-Roeber B (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp japonica. AoB Plants 12:pls011

    Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  CAS  PubMed  Google Scholar 

  • Semrad K (2010) Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2011:532908

    PubMed  PubMed Central  Google Scholar 

  • Seo NS, Lee SK, Song MY, Suh JP, Hahn TR, Ronald P, Jeon JS (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10

    Article  CAS  Google Scholar 

  • Shen LS, Kang YGG, Liu L, Yu H (2011) The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. Plant Cell 23:499–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song AP, Zhu XR, Chen FD, Gao HS, Jiang JF, Chen SM (2014) A Chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun WN, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta Gene Struct Expr 1577:1–9

    Article  CAS  Google Scholar 

  • Sun LP, Liu Y, Kong XP, Zhang D, Pan JW, Zhou Y, Wang L, Li DQ, Yang XH (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) The Arabidopsis Hsp18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants – a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2:751–761

    Article  CAS  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in Chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trosch R, Muhlhaus T, Schroda M, Willmund F (2015) ATP-dependent molecular chaperones in plastids – more complex than expected. BBA-Bioenerg 1847:872–888

    Article  CAS  Google Scholar 

  • Uchida A, Hibino T, Shimada T, Saigusa M, Takabe T, Araki E, Kajita H, Takabe T (2008) Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnol 25:141–150

    Article  CAS  Google Scholar 

  • Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA, Oladosu Y (2014) Heat shock proteins: functions and response against heat stress in plants. Int J Sci Technol Res 3:204–218

    Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat- shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 15:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, Kai G (2015) Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma 1–9

    Google Scholar 

  • Wang XL, Yang J, Li XB, Zhou Q, Guo C, Bao MZ, Zhang JW (2016) Over expression of PmHSP17.9 in transgenic Arabidopsis thaliana confers thermotolerance. Plant Mol Biol Report (in press)

    Google Scholar 

  • Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29:875–885

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H (2013) Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One 8:e69810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plant 54:105–111

    Article  CAS  Google Scholar 

  • Xue GP, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot 65:539–557

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana Hsp90-family gene Hsp81. Plant Cell Physiol 35:1207–1219

    CAS  PubMed  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yang YQ, Qin YX, Xie CG, Zhao FY, Zhao JF, Liu DF, Chen SY, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y (2010) The Arabidopsis chaperone J3 regulates the plasma membrane H + −ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye CR, Tenorio FA, Argayoso MA, Laza MA, Koh HJ, Redona ED, Jagadish KSV, Gregorio GB (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet 16:1–10

    Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki Y, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368:515–521

    Article  CAS  PubMed  Google Scholar 

  • Zhang SX, Xu ZS, Li PS, Yang L, Wei YQ, Chen M, Li LC, Zhang GS, Ma YZ (2013) Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Report 31:688–697

    Article  CAS  Google Scholar 

  • Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbonucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Ye C, Lu H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene GmHsfA1, in soybeans (Glycine max). J Plant Res 119:247–256

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang Z, Jing YJ, Wang LL, Liu X, Liu YX, Deng X (2009) Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boeahygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol 71:451–467

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu CF, Liu AL, Zou D, Chen XB (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628-635.

    Google Scholar 

Download references

Acknowledgements

This work was supported partially from the Department of Biotechnology (Ministry of Science and Technology, Government of India) to MKR. PSR acknowledges the Department of Science and Technology, Govt. of India for the fellowship and research grant through the INSPIRE Faculty Award No. IFA11-LSPA-06 and Young Scientist Scheme SB/YS/LS-12/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palakolanu Sudhakar Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reddy, P.S., Chakradhar, T., Reddy, R.A., Nitnavare, R.B., Mahanty, S., Reddy, M.K. (2016). Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_14

Download citation

Publish with us

Policies and ethics