AgentDrive: Agent-Based Simulator for Intelligent Cars and Its Application for Development of a Lane-Changing Assistant

Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Intelligent cars represent a promising technology expected to drastically improve safety and efficiency of automobile transportation. In this paper, we introduce an agent-based simulation platform AgentDrive and argue that it can be used to speed up the development and evaluation of new coordination algorithms for intelligent cars. We present the high-level architecture of the simulator and characterize the class of tasks for which is the tool best suited. In addition, we present a case study of AgentDrive being used for development of a lane-changing assistant technology. We describe the developed solution in detail and present the benchmark result, which were obtained using AgentDrive simulator, that demonstrate that coordinated lane changing enables safer and swifter lane changing then the traditional non-coordinated approach.

References

  1. 1.
    Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen, K.: Matsim-t: architecture and simulation times. In: Multi-agent Systems for Traffic and Transportation Engineering, pp. 57–78. Information Science Reference, Hershey (2009)Google Scholar
  2. 2.
    Bazzan, A.L.C., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29 (3), 375–403 (2013). doi:10.1017/S0269888913000118 CrossRefGoogle Scholar
  3. 3.
    Čáp, M., Novák, P., Selecký, M., Faigl, J., Vokřínek, J.: Asynchronous decentralized prioritized planning for coordination in multi-robot system. In: Intelligent Robots and Systems (IROS) (2013)Google Scholar
  4. 4.
    Georgeff, M.P., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency. In: Proceedings of the 5th International Workshop on Intelligent Agents V, Agent Theories, Architectures, and Languages, ATAL ’98, pp. 1–10. Springer, London (1999). http://dl.acm.org/citation.cfm?id=648205.749450
  5. 5.
    Greenblatt, J.B., Shaheen, S.: Automated vehicles, on-demand mobility, and environmental impacts. Curr. Sustain. Renew. Energy Rep. 2 (3), 74–81 (2015). doi:10.1007/s40518-015-0038-5. http://dx.doi.org/10.1007/s40518-015-0038-5 CrossRefGoogle Scholar
  6. 6.
    Helbing, D.: Social Self-organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior. Understanding Complex Systems. Springer, Berlin/Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Komenda, A., Vokrinek, J., Cap, M., Pechoucek, M.: Developing multiagent algorithms for tactical missions using simulation. IEEE Intell. Syst. 28 (1), 42–49 (2013). doi:10.1109/MIS.2012.90 CrossRefGoogle Scholar
  8. 8.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5 (3&4), 128–138 (2012)Google Scholar
  9. 9.
    Piórkowski, M., Raya, M., Lugo, A.L., Papadimitratos, P., Grossglauser, M., Hubaux, J.P.: Trans: realistic joint traffic and network simulator for vanets. SIGMOBILE Mob. Comput. Commun. Rev. 12 (1), 31–33 (2008). doi:10.1145/1374512.1374522 CrossRefGoogle Scholar
  10. 10.
    Rao, A.S., Georgeff, M.P.: Intentions and rational commitment. In: Proceedings of the First Pacific Rim Conference on Artificial Intelligence (PRICAI-90). Citeseer (1993)Google Scholar
  11. 11.
    Schaefer, M., Vokrinek, J.: Agentdrive: towards an agent-based coordination of intelligent cars. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection: 13th International Conference, PAAMS 2015, Salamanca, 3–4 June 2015, Proceedings, pp. 211–224. Springer International Publishing, Cham (2015)Google Scholar
  12. 12.
    Schaefer, M., Vokrinek, J., Pinotti, D., Tango, F.: Multi-agent traffic simulation for development and validation of autonomic car-to-car systems. In: Autonomic Road Transport Support Systems, pp. 165–180. Springer International Publishing, New York (2016). http://link.springer.com/chapter/10.1007/978-3-319-25808-9_10
  13. 13.
    Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10 (1), 3–15 (2011). doi:10.1109/TMC.2010.133 CrossRefGoogle Scholar
  14. 14.
    Stanica, R., Chaput, E., Beylot, A.L.: Simulation of vehicular ad-hoc networks: challenges, review of tools and recommendations. Comput. Netw. 55 (14), 3179–3188 (2011). http://dx.doi.org/10.1016/j.comnet.2011.05.007. http://www.sciencedirect.com/science/article/pii/S1389128611001629. Deploying vehicle-2-x communication

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Martin Schaefer
    • 1
  • Michal Čáp
    • 1
  • Jiří Vokřínek
    • 1
  1. 1.Department of Computer Science, Artificial Intelligence Center, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations