Exometabolomics for Linking Soil Carbon Dynamics to Microbial Communities

  • Andrea Lubbe
  • Trent Northen


Soil microbial communities are central players in the global carbon cycle, yet our understanding of how their metabolism affects soil carbon dynamics is limited. Exometabolomics is a very promising approach for characterizing the functioning of soil microbial communities in their environment, and for linking organic carbon in soil to the metabolism of particular microorganisms or taxonomic groups. Despite some technical challenges for community exometabolomics analysis related to the complexity of soil structure, a number of reports demonstrate the utility of this approach. The full potential of soil microbial community exometabolomics will be realized when it can be integrated with other approaches such as metagenomics, metatranscriptomics, and metaproteomics. Such data integration should enable better predictions of the effects of environmental perturbations on soil carbon cycling by soil microorganisms.


Nuclear Magnetic Resonance Microbial Community Soil Microbial Community Dissolve Organic Matter Soil Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



T.R.N. gratefully acknowledges support from ENIGMA—Ecosystems and Networks Integrated with Genes and Molecular Assemblies (, a Scientific Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the US Department of Energy, Office of Science, Office of Biological & Environmental Research under contract number DE-AC02-05CH11231. A.L. was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy, Award No. DE-SC0012627. We thank Katherine Louie for providing the mass spectrometry image of a microbial coculture.


  1. Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rrna for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887. doi: 10.1128/AEM.69.11.6875-6887.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic foot-printing. Nat Biotechnol 21:692–696. doi: 10.1038/nbt823 PubMedCrossRefGoogle Scholar
  3. Almstrand R, Daims H, Persson F, Sörensson F, Hermansson M (2013) New methods for analysis of spatial distribution and co-aggregation of microbial populations in complex biofilms. Appl Environ Microbiol 79:5978–5987. doi: 10.1128/AEM.01727-13 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196PubMedCrossRefGoogle Scholar
  5. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044. doi: 10.1373/49.7.1041 PubMedCrossRefGoogle Scholar
  6. Apostel C, Dippold M, Kuzyakov Y (2015) Biochemistry of hexose and pentose transformations in soil analyzed by position-specific labeling and 13C-PLFA. Soil Biol Biochem 80:199–208. doi: 10.1016/j.soilbio.2014.09.005 CrossRefGoogle Scholar
  7. Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816. doi: 10.1104/pp PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp B25–B84Google Scholar
  9. Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wil-son MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy. Biogeochemistry 16:1–42. doi: 10.1007/BF00024251 CrossRefGoogle Scholar
  10. Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR (2015) Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun 6:8289. doi: 10.1038/ncomms9289 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baran R, Bowen BP, Northen TR (2011) Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002. Mol BioSyst 7:3200. doi: 10.1039/c1mb05196b PubMedCrossRefGoogle Scholar
  12. Baran R, Bowen BP, Bouskill NJ, Brodie EL, Yannone SM, Northen TR (2010) Metabolite identification in synechococcus sp. PCC 7002 using untargeted stable isotope assisted metabolite profiling. Anal Chem 82:9034–9042. doi: 10.1021/ac1020112 PubMedCrossRefGoogle Scholar
  13. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. doi: 10.1038/ismej.2008.58 PubMedCrossRefGoogle Scholar
  14. Beale DJ, Barratt R, Marlow DR, Dunn MS, Palombo EA, Mor-rison PD, Key C (2013) Application of metabolomics to understanding biofilms in water distribution systems: a pilot study. Biofouling 29:283–294. doi: 10.1080/08927014.2013.772140 PubMedCrossRefGoogle Scholar
  15. Beale DJ, Dunn MS, Marney D (2010) Application of GC–MS metabolic profiling to “blue-green water” from microbial influenced corrosion in copper pipes. Corros Sci 52:3140–3145. doi: 10.1016/j.corsci.2010.04.039 CrossRefGoogle Scholar
  16. Beale DJ, Dunn MS, Morrison PD, Porter NA, Marlow DR (2012) Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic pro-filing. Corros Sci 55:272–279. doi: 10.1016/j.corsci.2011.10.026 CrossRefGoogle Scholar
  17. Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A (2006) Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb Ecol 51:220–231. doi: 10.1007/s00248-005-0002-9 PubMedCrossRefGoogle Scholar
  18. Behrends V, Williams H, Bundy J (2014) Metabolic footprinting: extracellular metabolomic analysis. In: Filloux A, Ramos J-L (eds) Pseudomonas methods and protocols. Methods in molecular biology. Springer, New York, pp 281–292CrossRefGoogle Scholar
  19. Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (El-Fish) and nanosims. Appl Environ Microbiol 74:3143–3150. doi: 10.1128/AEM.00191-08 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bellon-Maurel V, McBratney A (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–critical review and research perspectives. Soil Biol Biochem 43:1398–1410. doi: 10.1016/j.soilbio.2011.02.019 CrossRefGoogle Scholar
  21. Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805. doi: 10.1038/33900 CrossRefGoogle Scholar
  22. Bowen BP, Northen TR (2010) Dealing with the unknown: metabolomics and metabolite atlases. J Am Soc Mass Spectrom 21:1471–1476. doi: 10.1016/j.jasms.2010.04.003 PubMedCrossRefGoogle Scholar
  23. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  24. Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178. doi: 10.1038/35012061 PubMedCrossRefGoogle Scholar
  25. Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DC, Cornell MJ, Petty J, Hakes L, Wardleworth L, Rash B, Brown M, Dunn WB, Broadhurst D, O’Donoghue K, Hester SS, Dunkley TP, Hart SR, Swainston N, Li P, Gaskell SJ, Pa-ton NW, Lilley KS, Kell DB, Oliver SG (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6:4. doi: 10.1186/jbiol54 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chandra S, Pumphrey G, Abraham JM, Madsen EL (2008) Dynamic SIMS ion microscopy imaging of individual bacterial cells for studies of isotopically labeled molecules. Appl Surf Sci 255:847–851. doi: 10.1016/j.apsusc.2008.05.129 (Proceedings of the Sixteenth International Conference on Secondary Ion Mass Spectrometry, SIMS XVI)CrossRefGoogle Scholar
  27. Cliff JB, Gaspar DJ, Bottomley PJ, Myrold DD (2002) Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 68:4067–4073. doi: 10.1128/AEM.68.8.4067-4073.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833. doi: 10.1038/nmeth1094 PubMedCrossRefGoogle Scholar
  29. Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano TM (2006) Characterization of water extractable organic matter in a deep soil pro-file. Chemosphere 62:1583–1590. doi: 10.1016/j.chemosphere.2005.07.065 PubMedCrossRefGoogle Scholar
  30. Date Y, Nakanishi Y, Fukuda S, Kato T, Tsuneda S, Ohno H, Kikuchi J (2010) New monitoring approach for metabolic dynamics in microbial ecosystems using stable-isotope-labeling technologies. J Biosci Bioeng 110:87–93. doi: 10.1016/j.jbiosc.2010.01.004 PubMedCrossRefGoogle Scholar
  31. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324. doi: 10.1128/AEM.01526-10 PubMedCrossRefGoogle Scholar
  32. DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865. doi: 10.1128/AEM.71.12.7858-7865.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78. doi: 10.1002/mas.20108 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714. doi: 10.1002/bit.20457 PubMedCrossRefGoogle Scholar
  35. Dumont MG, Murrell JC (2005) Stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3:499–504. doi: 10.1038/nrmicro1162 PubMedCrossRefGoogle Scholar
  36. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625. doi: 10.1039/B418288J PubMedCrossRefGoogle Scholar
  37. El Zahar Haichar F, Achouak W, Christen R, Heulin T, Marol C, Marais MF, Mougel C, Ranjard L, Balesdent J, Berge O (2007) Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9:625–634. doi: 10.1111/j.1462-2920.2006.01182.x CrossRefGoogle Scholar
  38. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183. doi: 10.1016/S0169-5347(02)02496-5 CrossRefGoogle Scholar
  39. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039. doi: 10.1126/science.1153213 PubMedCrossRefGoogle Scholar
  40. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395. doi: 10.1073/pnas.1215210110 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Forseth RR, Schroeder FC (2011) NMR-spectroscopic analysis of mixtures: from structure to function. Curr Opin Chem Biol 15:38–47. doi: 10.1016/j.cbpa.2010.10.010 PubMedCrossRefGoogle Scholar
  42. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol 13:360–372. doi: 10.1038/nrmicro3451 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fu Z, Verderame TD, Leighton JM, Sampey BP, Appelbaum ER, Patel PS, Aon JC (2014) Exometabolome analysis reveals hypoxia at the up-scaling of a Saccharomyces cerevisiae high-cell density fed-batch biopharmaceutical process. Microb Cell Factories 13:32. doi: 10.1186/1475-2859-13-32 CrossRefGoogle Scholar
  44. Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In: Metz TO (ed) Metabolic profiling, methods in molecular biology. Humana Press, New York, pp 191–204CrossRefGoogle Scholar
  45. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, Bessant C, Connor S, Capuani G, Craig A, Ebbels T, Kell DB, Manetti C, Newton J, Paternostro G, Somorjai R, Sjöström M, Trygg J, Wulfert F (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241. doi: 10.1007/s11306-007-0081-3 CrossRefGoogle Scholar
  46. Gregorich EG, Liang BC, Drury CF, Mackenzie AF, McGill WB (2000) Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biol Biochem 32:581–587. doi: 10.1016/S0038-0717(99)00146-7 CrossRefGoogle Scholar
  47. Grivet JP, Delort AM, Portais JC (2003) NMR and microbiology: from physiology to metabolomics. Biochimie Metabolic NMR 85:823–840. doi: 10.1016/j.biochi.2003.08.004 CrossRefGoogle Scholar
  48. Hadjithomas M, Chen IMA, Chu K, Ratner A, Palaniappan K, Szeto E, Huang J, Reddy TBK, Cimermančič P, Fischbach MA, Ivanova NN, Markowitz VM, Kyrpides NC, Pati A (2015) IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. mBio 6:e00932-15. doi: 10.1128/mBio.00932-15 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gi-lard F, Heintz D, Schaeffer C, Carapito C, Van Dorsselaer A, Tcherkez G, Arsène-Ploetze F, Bertin PN (2012) In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator. Euglena mutabilis. ISME J. 6:1391–1402. doi: 10.1038/ismej.2011.198 PubMedCrossRefGoogle Scholar
  50. Harrigan GG, Goodacre R (eds) (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Springer, BostonGoogle Scholar
  51. Henriques IDS, Aga DS, Mendes P, O’Connor SK, Love NG (2007) Metabolic footprinting: a new approach to identify physiological changes in complex microbial communities upon exposure to toxic chemicals. Environ Sci Technol 41:3945–3951. doi: 10.1021/es062796t PubMedCrossRefGoogle Scholar
  52. Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G (2010) Non-targeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal Chem 82:6621–6628. doi: 10.1021/ac1011574 PubMedCrossRefGoogle Scholar
  53. Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37:501–510. doi: 10.1016/j.orggeochem.2005.11.003 CrossRefGoogle Scholar
  54. Huang X, Chen Y-J, Cho K, Nikolskiy I, Crawford PA, Patti GJ (2014) X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Anal Chem 86:1632–1639. doi: 10.1021/ac403384n PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hummel J, Selbig J, Walther D, Kopka J (2007) The golm metabolome database: a database for GC-MS based metabolite profiling. In: Nielsen J, Jewett MC (eds) Metabolomics, topics in current genetics. Springer, Berlin, pp 75–95Google Scholar
  56. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606. doi: 10.1038/nbt1041 PubMedCrossRefGoogle Scholar
  57. Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305CrossRefGoogle Scholar
  58. Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, Liu P, Mandal R, Krishnamurthy R, Sinelnikov I, Wilson M, Wishart DS (2011) YMDB: the Yeast Metabolome Database. Nucleic Acids Res. doi: 10.1093/nar/gkr916
  59. Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Nelson D, Post WM, Retallack G, Wielopolski L (2004) Carbon cycling in soil. Front Ecol Environ 2:522–528. doi: 10.2307/3868382 CrossRefGoogle Scholar
  60. Jones OAH, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL (2014) Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem 33:61–64. doi: 10.1002/etc.2418 PubMedCrossRefGoogle Scholar
  61. Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999. doi: 10.1016/j.soilbio.2005.08.012 CrossRefGoogle Scholar
  62. Kakumanu ML, Cantrell CL, Williams MA (2013) Microbial community response to varying magnitudes of desiccation in soil: a test of the osmolyte accumulation hypothesis. Soil Biol Biochem 57:644–653. doi: 10.1016/j.soilbio.2012.08.014 CrossRefGoogle Scholar
  63. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304CrossRefGoogle Scholar
  64. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565. doi: 10.1038/nrmicro1177 PubMedCrossRefGoogle Scholar
  65. Kelly AE, Ou HD, Withers R, Dötsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124:12013–12019. doi: 10.1021/ja026121b PubMedCrossRefGoogle Scholar
  66. Kido Soule MC, Longnecker K, Johnson WM, Kujawinski EB (2015) Environmental metabolomics: analytical strategies. Mar Chem 177:374–387. doi: 10.1016/j.marchem.2015.06.029
  67. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. doi: 10.1038/nprot.2009.237 PubMedCrossRefGoogle Scholar
  68. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index li-braries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048. doi: 10.1021/ac9019522 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281. doi: 10.1021/ac051683 PubMedCrossRefGoogle Scholar
  70. Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270. doi: 10.1016/S0016-7061(97)00055-4
  71. Kujawinski EB (2002) Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures. Environ Forensics 3:207–216. doi: 10.1080/713848382 CrossRefGoogle Scholar
  72. Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37. doi: 10.1016/j.marchem.2004.06.038 (New Approaches in Marine Organic Biogeochemistry: A Tribute to the Life and Science of John I Hedges)CrossRefGoogle Scholar
  73. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi: 10.1126/science.1097396 PubMedCrossRefGoogle Scholar
  74. Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566. doi: 10.1126/science.1145557 PubMedCrossRefGoogle Scholar
  75. Leenheer JA, Croué JP (2003) Characterizing aquatic dissolved organic matter. Environ Sci Technol 37:18A–26APubMedCrossRefGoogle Scholar
  76. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer K-H, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Micro-biol 65:1289–1297Google Scholar
  77. Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70:81–95. doi: 10.1111/j.1365-313X.2012.04899.x PubMedCrossRefGoogle Scholar
  78. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi: 10.1038/nature16069 PubMedCrossRefGoogle Scholar
  79. Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6:443–458. doi: 10.1021/pr0605217 PubMedCrossRefGoogle Scholar
  80. Louie KB, Bowen BP, Cheng X, Berleman JE, Chakraborty R, Deutschbauer A, Arkin A, Northen TR (2013) “Replica-extraction-transfer” nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. Anal Chem 85:10856–10862. doi: 10.1021/ac402240q PubMedCrossRefGoogle Scholar
  81. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373. doi: 10.1128/AEM.68.11.5367-5373.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mas S, Villas-Bôas SG, Edberg Hansen M, Åkesson M, Nielsen J (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng 96:1014–1022. doi: 10.1002/bit.21194 PubMedCrossRefGoogle Scholar
  83. Morales-Cid G, Gebefugi I, Kanawati B, Harir M, Hertkorn N, Rosselló-Mora R, Schmitt-Kopplin P (2009) Automated microextraction sample preparation coupled on-line to FT-ICR-MS: application to desalting and concentration of river and marine dissolved organic matter. Anal Bioanal Chem 395:797–807. doi: 10.1007/s00216-009-3025-0 PubMedCrossRefGoogle Scholar
  84. Morales SE, Holben WE (2011) Linking bacterial identities and eco-system processes: can “omic” analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16. doi: 10.1111/j.1574-6941.2010.00938.x Google Scholar
  85. Muller EEL, Glaab E, May P, Vlassis N, Wilmes P (2013) Con-densing the omics fog of microbial communities. Trends Microbiol 21:325–333. doi: 10.1016/j.tim.2013.04.009 PubMedCrossRefGoogle Scholar
  86. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056. doi: 10.1038/4551054a PubMedCrossRefGoogle Scholar
  87. Nunan N, Ritz K, Crabb D, Harris K, Wu K, Crawford JW, Young IM (2001) Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil. FEMS Microbiol Ecol 37:67–77. doi: 10.1111/j.1574-6941.2001.tb00854.x CrossRefGoogle Scholar
  88. Ohno T, Parr TB, Gruselle MI, Fernandez IJ, Sleighter RL, Hatcher PG (2014) Molecular composition and biodegradability of soil organic matter: a case study comparing two new england forest types. Environ Sci Technol 48:7229–7236. doi: 10.1021/es405570c PubMedCrossRefGoogle Scholar
  89. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378. doi: 10.1016/S0167-7799(98)01214-1 PubMedCrossRefGoogle Scholar
  90. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487. doi: 10.1126/science.1061338 PubMedCrossRefGoogle Scholar
  91. Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Factories 11:122. doi: 10.1186/1475-2859-11-122 CrossRefGoogle Scholar
  92. Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622PubMedPubMedCentralCrossRefGoogle Scholar
  93. Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agronomy 75:57–134CrossRefGoogle Scholar
  94. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649. doi: 10.1038/35001054 PubMedCrossRefGoogle Scholar
  95. Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ (2011) CE-MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32:52–65. doi: 10.1002/elps.201000378 PubMedCrossRefGoogle Scholar
  96. Ramautar R, Somsen GW, de Jong GJ (2013) CE-MS for metabolomics: developments and applications in the period 2010-2012. Electrophoresis 34:86–98. doi: 10.1002/elps.201200390 PubMedCrossRefGoogle Scholar
  97. Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291. doi: 10.1002/elps.200800512 PubMedCrossRefGoogle Scholar
  98. Resmer KL, White RL (2011) Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy. Mol Bio Syst 7:2220. doi: 10.1039/c1mb05105a PubMedCrossRefGoogle Scholar
  99. Rettedal EA, Brözel VS (2015) Characterizing the diversity of active bacteria in soil by comprehensive stable isotope probing of DNA and RNA with H218O. Microbiology Open 4:208–219. doi: 10.1002/mbo3.230 PubMedCentralCrossRefGoogle Scholar
  100. Rochfort S, Ezernieks V, Mele P, Kitching M (2015) NMR metabolomics for soil analysis provide complementary, orthogonal data to MIR and traditional soil chemistry approaches—a land use study. Magn Reson Chem 53:719–725. doi: 10.1002/mrc.4187 PubMedCrossRefGoogle Scholar
  101. Rodgers RP, Blumer EN, Hendrickson CL, Marshall AG (2000) Stable isotope incorporation triples the upper mass limit for determination of elemental composition by accurate mass measurement. J Am Soc Mass Spectrom 11:835–840. doi: 10.1016/S1044-0305(00)00158-6 PubMedCrossRefGoogle Scholar
  102. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290. doi: 10.1038/ismej.2007.53 PubMedPubMedCentralGoogle Scholar
  103. Rousk J, Jones DL (2010) Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5 M K2SO4 soil extracts. Soil Biol Biochem 42:2331–2335. doi: 10.1016/j.soilbio.2010.08.017 CrossRefGoogle Scholar
  104. Rübel O, Greiner A, Cholia S, Louie K, Bethel EW, Northen TR, Bowen BP (2013) OpenMSI: a high-performance web-based platform for mass spectrometry imaging. Anal Chem 85:10354–10361. doi: 10.1021/ac402540a PubMedCrossRefGoogle Scholar
  105. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. doi: 10.1016/S0958-1669(03)00067-3 PubMedCrossRefGoogle Scholar
  106. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi: 10.1038/nature10386 PubMedCrossRefGoogle Scholar
  107. Schneider B, Gershenzon J, Graser G, Hölscher D, Schmitt B (2003) One-dimensional 13C NMR and HPLC-1H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies. Phytochem Rev 2:31–43. doi: 10.1023/B:PHYT.0000004196.73829.4e CrossRefGoogle Scholar
  108. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 108:1955–1960. doi: 10.1073/pnas.1008441108 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sévin DC, Kuehne A, Zamboni N, Sauer U (2015) Biological in-sights through nontargeted metabolomics. Curr Opin Biotechnol 34:1–8. doi: 10.1016/j.copbio.2014.10.001 PubMedCrossRefGoogle Scholar
  110. Silva LP, Northen TR (2015) Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. Curr Opin Biotechnol 34:209–216. doi: 10.1016/j.copbio.2015.03.015 PubMedCrossRefGoogle Scholar
  111. Simpson AJ, Tseng L-H, Simpson MJ, Spraul M, Braumann U, Kingery WL, Kelleher BP, Hayes MHB (2004) The application of LC-NMR and LC-SPE-NMR to compositional studies of natural organic matter. Analyst 129:1216. doi: 10.1039/b408064e PubMedCrossRefGoogle Scholar
  112. Smith CA, Maille GO, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27Google Scholar
  113. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New YorkGoogle Scholar
  114. Swenson TL, Bowen BP, Nico PS, Northen TR (2015a) Competitive sorption of microbial metabolites on an iron oxide mineral. Soil Biol Biochem 90:34–41. doi: 10.1016/j.soilbio.2015.07.022 CrossRefGoogle Scholar
  115. Swenson TL, Jenkins S, Bowen BP, Northen TR (2015b) Untargeted soil metabolomics methods for analysis of extractable organic matter. Soil Biol Biochem 80:189–198. doi: 10.1016/j.soilbio.2014.10.007 CrossRefGoogle Scholar
  116. Szeto SSW, Reinke SN, Sykes BD, Lemire BD (2010) Mutations in the saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through 1H NMR-based metabolic footprinting. J Proteome Res 9:6729–6739. doi: 10.1021/pr100880y PubMedCrossRefGoogle Scholar
  117. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. doi: 10.1021/ac300698c PubMedPubMedCentralCrossRefGoogle Scholar
  118. Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends Anal Chem 27:251–260. doi: 10.1016/j.trac.2008.01.008 CrossRefGoogle Scholar
  119. Thiel V, Heim C, Arp G, Hahmann U, Sjövall P, Lausmaa J (2007) Biomarkers at the microscopic range: ToF-SIMS molecular imaging of Archaea-derived lipids in a microbial mat. Geobiology 5:413–421. doi: 10.1111/j.1472-4669.2007.00119.x CrossRefGoogle Scholar
  120. Torres IF, Bastida F, Hernández T, Bombach P, Richnow HH, García C (2014) The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass. Soil Biol Biochem 75:152–160. doi: 10.1016/j.soilbio.2014.04.007 CrossRefGoogle Scholar
  121. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the streptomyces coelicolor secreted metabolome. mBio 4:e00459-13. doi: 10.1128/mBio.00459-13 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537. doi: 10.1016/j.soilbio.2003.10.015 CrossRefGoogle Scholar
  123. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  124. Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305. doi: 10.1016/j.ab.2005.11.019 PubMedCrossRefGoogle Scholar
  125. Warren CR (2014) Response of osmolytes in soil to drying and re-wetting. Soil Biol Biochem 70:22–32. doi: 10.1016/j.soilbio.2013.12.008 CrossRefGoogle Scholar
  126. Warren CR (2013a) High diversity of small organic N observed in soil water. Soil Biol Biochem 57:444–450. doi: 10.1016/j.soilbio.2012.09.025 CrossRefGoogle Scholar
  127. Warren CR (2013b) Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485. doi: 10.1111/nph.12171 PubMedCrossRefGoogle Scholar
  128. Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9:683–694. doi: 10.1038/nrmicro2634 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC (2013) Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal Chem 85:10385–10391. doi: 10.1021/ac4023154 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Weiss MS, Abele U, Weckesser J, Welte W, Schiltz E, Schulz GE (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630. doi: 10.1126/science.1721242 PubMedCrossRefGoogle Scholar
  131. Welch JLM, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA 113:E791–E800. doi: 10.1073/pnas.1522149113 CrossRefGoogle Scholar
  132. van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370:17–25. doi: 10.1016/j.ab.2007.07.022 PubMedCrossRefGoogle Scholar
  133. Wessel AK, Hmelo L, Parsek MR, Whiteley M (2013) Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 11:337–348. doi: 10.1038/nrmicro3010 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wishart DS (2007) Current Progress in computational metabolomics. Brief Bioinform 8:279–293. doi: 10.1093/bib/bbm030 PubMedCrossRefGoogle Scholar
  135. Woo H-K, Northen TR, Yanes O, Siuzdak G (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat Protoc 3:1341–1349. doi: 10.1038/nprot.2008.110 PubMedCrossRefGoogle Scholar
  136. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi: 10.1093/nar/gks374 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC (2012) Primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194:6023–6028. doi: 10.1128/JB.00823-12 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129. doi: 10.1007/s003740050533 CrossRefGoogle Scholar
  139. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol Bio Syst 8:470–481. doi: 10.1039/c1mb05350g Google Scholar
  140. Zsolnay Á (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma, Ecological aspects of dissolved organic matter in soils 113:187–209. doi: 10.1016/S0016-7061(02)00361-0 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations