Skip to main content

Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9956))

Abstract

Business processes are prone to subtle changes over time, as unwanted behavior manifests in the execution over time. This problem is related to anomaly detection, as these subtle changes start of as anomalies at first, and thus it is important to detect them early. However, the necessary process documentation is often outdated, and thus not usable. Moreover, the only way of analyzing a process in execution is the use of event logs coming from process-aware information systems, but these event logs already contain anomalous behavior and other sorts of noise. Classic process anomaly detection algorithms require a dataset that is free of anomalies; thus, they are unable to process the noisy event logs. Within this paper we propose a system, relying on neural network technology, that is able to deal with the noise in the event log and learn a representation of the underlying model, and thus detect anomalous behavior based on this representation. We evaluate our approach on five different event logs, coming from process models with different complexities, and demonstrate that our approach yields remarkable results of 97.2 % F1-score in detecting anomalous traces in the event log, and 95.6 % accuracy in detecting the respective anomalous activities within the traces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  2. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 8–15. ACM (2013)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint: arXiv:1409.0473

  4. Bezerra, F., Wainer, J., Aalst, W.M.P.: Anomaly detection using process mining. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD 2009. LNBIP, pp. 149–161. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01862-6_13

    Chapter  Google Scholar 

  5. Burattin, A.: PLG2: multiperspective processes randomization and simulation for online and offline settings. CoRR abs/1506.0 (2015)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. John Wiley & Sons, Hoboken (2005)

    Book  Google Scholar 

  8. Eskin, E.: Anomaly detection over noisy data using learned probability distributions. In: Proceedings of the International Conference on Machine Learning. Citeseer (2000)

    Google Scholar 

  9. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, pp. 170–180. Springer, Heidelberg (2002). doi:10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  10. Hecht-Nielsen, R.: Replicator neural networks for universal optimal source coding. Science 269(5232), 1861 (1995)

    Article  Google Scholar 

  11. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1), 185–234 (1989)

    Article  MathSciNet  Google Scholar 

  12. Japkowicz, N.: Supervised versus unsupervised binary-learning by feedforward neural networks. Mach. Learn. 42(1), 97–122 (2001)

    Article  MATH  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  17. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sign. Process. 99, 215–249 (2014)

    Article  Google Scholar 

  18. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

    Article  Google Scholar 

  19. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)

    Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th International Conference on Machine Learning (ICML 2013), pp. 1139–1147 (2013)

    Google Scholar 

  22. Van Der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This project (HA project no. 479/15-21) is funded in the framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbund-vorhaben (State Offensive for the Development of Scientific and Economic Excellence) and by the LOEWE initiative (Hessen, Germany) within the NICER project [III L 5-518/81.004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Nolle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nolle, T., Seeliger, A., Mühlhäuser, M. (2016). Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46307-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46306-3

  • Online ISBN: 978-3-319-46307-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics