Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships

  • Guillaume BoscEmail author
  • Jérôme Golebiowski
  • Moustafa Bensafi
  • Céline Robardet
  • Marc Plantevit
  • Jean-François Boulicaut
  • Mehdi Kaytoue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9956)


From a molecule to the brain perception, olfaction is a complex phenomenon that remains to be fully understood in neuroscience. A challenge is to establish comprehensive rules between the physicochemical properties of the molecules (e.g., weight, atom counts) and specific and small subsets of olfactory qualities (e.g., fruity, woody). This problem is particularly difficult as the current knowledge states that molecular properties only account for \(30\,\%\) of the identity of an odor: predictive models are found lacking in providing universal rules. However, descriptive approaches enable to elicit local hypotheses, validated by domain experts, to understand the olfactory percept. Based on a new quality measure tailored for multi-labeled data with skewed distributions, our approach extracts the top-k unredundant subgroups interpreted as descriptive rules \(description \rightarrow \{subset\ of\ labels\}\). Our experiments on benchmark and olfaction datasets demonstrate the capabilities of our approach with direct applications for the perfume and flavor industries.


Search Space Jaccard Index Minimum Support Threshold Subgroup Discovery Odorant Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is partially supported by the CNRS (Préfute PEPS FASCIDO) and the Institut rhônalpin des systémes complexes (IXXI).


  1. 1.
    Arctander, S.: Perfume and Flavor Materials of Natural Origin, vol. 2. Allured Publishing Corp., Carol Stream (1994)Google Scholar
  2. 2.
    Buck, L., Axel, R.: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1), 175–187 (1991)CrossRefGoogle Scholar
  3. 3.
    Castro, J.B., Ramanathan, A., Chennubhotla, C.S.: Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization. PLoS ONE 8(9), 09 (2013)Google Scholar
  4. 4.
    de March, C.A., Ryu, S., Sicard, G., Moon, C., Golebiowski, J.: Structure-odour relationships reviewed in the postgenomic era. Flavour Fragr. J. 30(5), 342–361 (2015)CrossRefGoogle Scholar
  5. 5.
    Delasalle, C., de March, C.A., Meierhenrich, U.J., Brevard, H., Golebiowski, J., Baldovini, N.: Structure-odor relationships of semisynthetic \(\beta \)-santalol analogs. Chem. Biodivers. 11(11), 1843–1860 (2014)CrossRefGoogle Scholar
  6. 6.
    Duivesteijn, W., Feelders, A., Knobbe, A.J.: Exceptional model mining - supervised descriptive local pattern mining with complex target concepts. Data Min. Knowl. Discov. 30(1), 47–98 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI (1993)Google Scholar
  8. 8.
    Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Galbrun, E., Miettinen, P.: From black and white to full color: extending redescription mining outside the Boolean world. Stat. Anal. Data Min. 5(4), 284–303 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kaeppler, K., Mueller, F.: Odor classification: a review of factors influencing perception-based odor arrangements. Chem. Senses 38(3), 189–209 (2013)CrossRefGoogle Scholar
  11. 11.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: IJCAI, pp. 1342–1347 (2011)Google Scholar
  12. 12.
    Keller, A., Vosshall, L., Meyer, P., Cecchi, G., Stolovitzky, G., Falcao, A., Norel, R., Norman, T., Hoff, B., Suver, C., Friend, S.: Dream olfaction prediction challenge (2015).!Synapse:syn2811262. Sponsors: IFF, IBM Research, Sage Bionetworks and DREAM
  13. 13.
    Khan, R.M., Luk, C.-H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., Sobel, N.: Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J. Neurosci. 27(37), 10015–10023 (2007)CrossRefGoogle Scholar
  14. 14.
    Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res. 10, 377–403 (2009)zbMATHGoogle Scholar
  15. 15.
    Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 667–685 (2010)Google Scholar
  16. 16.
    van Leeuwen, M., Knobbe, A.J.: Diverse subgroup set discovery. Data Min. Knowl. Discov. 25(2), 208–242 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). doi: 10.1007/3-540-63223-9_108 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Guillaume Bosc
    • 1
    Email author
  • Jérôme Golebiowski
    • 3
  • Moustafa Bensafi
    • 4
  • Céline Robardet
    • 1
  • Marc Plantevit
    • 2
  • Jean-François Boulicaut
    • 1
  • Mehdi Kaytoue
    • 1
  1. 1.Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205LyonFrance
  2. 2.Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205LyonFrance
  3. 3.Université de Nice, CNRS, Institute of ChemistryNiceFrance
  4. 4.Université de Lyon, CNRS, CRNL, UMR5292, INSERM U1028LyonFrance

Personalised recommendations