Skip to main content

Study of Specific Features of Laser Radiation Scattering by Aggregates of Nanoparticles in Ferrofluids Used for Optoelectronic Communication Systems

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2016, NEW2AN 2016)

Abstract

Ferromagnetic fluids are considered to be advanced materials both for the fundamental research and for possible applications, among which some integrated optic devices with the elements containing ferrofluids and controlled by an external magnetic field have recently been discussed. This work is devoted to the experimental study of the factors affecting the intensity and spatial distribution of the laser radiation scattered by the particle structures in ferrofluids in a zero magnetic field and in the presence of magnetic field with H = 1000 Oe. The samples of nanodispersed magnetite (Fe3O4) suspended in kerosene and in water were studied. Certain trends determining the scattering patterns were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candiani, A., Margulis, W., Sterner, C., Konstantaki, M., Pissadakis, S.: Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Opt. Lett. 36, 2548–2550 (2011)

    Article  Google Scholar 

  2. Candiani, A., Argyros, A., Leon-Saval, S.G., Lwin, R., Selleri, S., Pissadakis, S.: A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber. Appl. Phys. Lett. 104, 111106 (2014)

    Article  Google Scholar 

  3. Deng, M., Huang, C., Liu, D., Jin, W., Zhu, T.: All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Exp. 23, 20668–20674 (2015)

    Article  Google Scholar 

  4. Schere, C., Neto, A.: Ferrofluids: properties and applications. Braz. J. Phys. 35, 718–727 (2005)

    Article  Google Scholar 

  5. Taylor, R., Coulombe, S., Otanicar, T., et al.: Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013)

    Article  Google Scholar 

  6. Agruzov, P.M., Pleshakov, I.V., Bibik, E.E., Shamray, A.V.: Magneto-optic effects in silica core microstructured fibers with a ferrofluidic cladding. Appl. Phys. Lett. 104, 071108 (2014)

    Article  Google Scholar 

  7. Zhao, Y., Lv, R., Zhang, Y., Wang, Q.: Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Opt. Lasers Eng. 50, 1177–1184 (2012)

    Article  Google Scholar 

  8. Hoffmann, B., Köhler, W.: Reversible light-induced cluster formation of magnetic colloids. J. Magn. Magn. Mater. 262, 289–293 (2003)

    Article  Google Scholar 

  9. Sawada, T., Hiroshiga, K., Matsuzaki, M., et al.: Visualization of clustering on nonmagnetic and ferromagnetic particles in magnetic fluids. In: SPIE Conference on Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, vol. 3783, p. 389 (1999)

    Google Scholar 

  10. Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  MATH  Google Scholar 

  11. Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)

    Article  MATH  Google Scholar 

  12. Du, T., Yuan, S., Luo, W.: Thermal lens coupled magneto-optical effect in a ferrofluid. Appl. Phys. Lett. 65, 1844–1847 (1994)

    Article  Google Scholar 

  13. Suslov, S.A., Bozhko, A.A., Sidorov, A.S., Putin, G.F.: Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study. Phys. Rev. E 86, 016301 (2012)

    Article  Google Scholar 

  14. Volker, Th., Blums, E., Odenbach, S.: Heat and mass transfer phenomena in magnetic fluids. GAMM-Mitt. 30, 185–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meng, Z.M., Liu, H.Y., Zhao, W.R., et al.: Effects of optical forces on the transmission of magnetic fluids investigated by Z-scan technique. J. Appl. Phys. 106, 044905 (2009)

    Article  Google Scholar 

  16. Broillet, S., Szlag, D., Bouwens, A., et al.: Visible light optical coherence correlation spectroscopy. Opt. Exp. 22, 21944–21957 (2014)

    Article  Google Scholar 

  17. Nepomnyashchaya, E., Velichko, E., Aksenov, E., Bogomaz, T.: Optoelectronic method for analysis of biomolecular interaction dynamics. IOP. J. Phys: Conf. Ser. 541, 012039 (2014)

    Google Scholar 

  18. Nepomniashchaia, E.K., Velichko, E.N., Aksenov, E.T.: Solution of the laser correlation spectroscopy inverse problem by the regularization method. Univ. Res. J. 15, 13–21 (2015)

    Google Scholar 

  19. Chapple, P.B., Staromlynska, J., Hermann, J.A., McKay, T.J., McDuff, R.G.: Single-beam Z-scan: measurement techniques and analysis. J. Nonlinear Opt. Phys. Mater. 6, 251–293 (1997)

    Article  Google Scholar 

  20. Bibik, E.E., Matygullin, B.Y., Raikher, Y.L., Shliomis, M.I.: Magnetostatic properties of magnetite colloids. Magnetohydrodynamics 9, 58–62 (1973)

    Google Scholar 

  21. Milichko, V.A., Nechaev, A.I., Valtsifer, V.A., et al.: Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Res. Lett. 8, 317–324 (2013)

    Article  Google Scholar 

  22. Taboada-Serrano, P., Chin, C.J., Yiacoumi, S., et al.: Modeling aggregation of colloidal particles. Curr. Opin. Colloid Interface Sci. 10, 123–132 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to E.E. Bibik for providing ferrofluid samples, and A.V. Varlamov for the help in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Velichko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Prokofiev, A., Nepomnyashchaya, E., Pleshakov, I., Kuzmin, Y., Velichko, E., Aksenov, E. (2016). Study of Specific Features of Laser Radiation Scattering by Aggregates of Nanoparticles in Ferrofluids Used for Optoelectronic Communication Systems. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2016 2016. Lecture Notes in Computer Science(), vol 9870. Springer, Cham. https://doi.org/10.1007/978-3-319-46301-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46301-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46300-1

  • Online ISBN: 978-3-319-46301-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics