Skip to main content

Optimization Algorithm for an Information Graph for an Amount of Communications

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2016, NEW2AN 2016)

Abstract

In connection with the annual increase in the volume of processed data and raising the importance of computer modeling of real objects and processes, requirement to improve the technology of parallel algorithms is increasing. Successful implementation of parallel algorithms on supercomputers depends on several parameters, one of which is the amount of inter-processor data transfers. Starting at a particular number of processors, computational speedup falls due to increased volume of data transmission. For some algorithms this dependence is a linear decreasing function. Imbalance of volume of calculations and complexity of data transmission operations increases with the rising of the number of processors. In this article we present the results of investigations of dependence of the density and algorithm execution time on the amount of interprocessor transfers. Also, we present a method of reducing interprocessor communications through more efficient distribution of operations of the algorithm by processes. This method does not account for the execution time of the operations themselves, but it is a foundation for more improved methods of multiparametric optimization of parallel algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, O.V., Katueva, Y.: The technology of parallel computing for the analysis and optimization. In: Management Problems, № 4 (2003)

    Google Scholar 

  2. Ahmad, I.: A parallel algorithm for optimal task assignment in distributed systems. In: Ahmad, I., Kafil, M.: Proceedings of the 1997 Advances in Parallel and Distributed Computing Conference, p. 284 (1997)

    Google Scholar 

  3. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  4. Akl, S.: The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  5. Andrews, G.R.: Concurrent Programming: Principles and Practice. Benjamin/Cummings, Menlo Park (1991)

    MATH  Google Scholar 

  6. Arvindam, S., Kumar, V., Rao, V.: Floorplan optimization on multiprocessors. In: Proceedings of 1989 International Conference on Computer Design, pp. 109–113. IEEE Computer Society (1989)

    Google Scholar 

  7. Boyer, L.L., Pawley, G.S.: Molecular dynamics of clusters of particles interacting with pairwise forces using a massively parallel computer. J. Comput. Phys. 78, 405–409 (1988)

    Article  MATH  Google Scholar 

  8. Brunet, J.P., Edelman, A., Mesirov, J.P.: Hypercube algorithms for direct N-body solver for different granularities. SIAM J. Sci. Stat. Comput. 14, 1143–1149 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, C.: MPIPP: an automatic profileguided parallel process placement toolset for SMP clusters and multiclusters. In: Proceedings of the 20th Annual International Conference on Super-Computing, pp. 353–360 (2006)

    Google Scholar 

  10. Coddington, P.: Random number generators for parallel computers. In: NHSE Review, № 2 (1996)

    Google Scholar 

  11. Drake, D.E., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1, 107–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frank, J., Vuik, C., Vermolen, F.J.: Parallel deflated Krylov methods for incompressible flow. In: Parallel Computational Fluid Dynamics: Practice and Theory, pp. 381–388. Elsevier Publishing, Amsterdam (2002)

    Google Scholar 

  13. Gergel, V.P.: Lectures of Parallel Programming. In: Gergel, V.P., Fursov, V.A.: Proceedings of Benefit. Samara State Aerospace University Publishing House, p. 163c (2009)

    Google Scholar 

  14. Hu, Y.F., Emerson, D.R., Blake, R.J.: The communication performance of the cray T3D and its effect on iterative solvers. Parallel Comput. 22, 22–32 (1993)

    MATH  Google Scholar 

  15. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the Maui scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Jordan, H.F., Alaghband, F.: Fundamentals of Parallel Processing. Pearson Education, Inc., Upper Saddle River (2003)

    Google Scholar 

  17. Matrone, A., Bucchigniani, E., Stella, F.: Parallel polynomial preconditioners for the analysis of chaotic flows in Rayleigh-Benard convection. In: Keyes, D., et al. (eds.) Parallel Computational Fluid Dynamics: Practice and Theory, pp. 139–145. Elsevier Publishing, Amsterdam (2000)

    Google Scholar 

  18. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  19. Plasmeijer, M.J., Plasmeijer, R., Eekelen, M.C.: Functional Programming and Parallel Graph Rewriting. Addison Wesley Publishing Company, Reading (1993). 592 p.

    MATH  Google Scholar 

  20. Rauber, N., Runger, G.: Parallel Programming: For Multicore and Cluster Systems. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  21. Roosta, S.H.: Parallel Processing and Parallel Algorithms: Theory and Computation. Springer, New York (2000)

    Book  MATH  Google Scholar 

  22. Shichkina, Y.: Reducing the height of the information graph of the parallel algorithm. Scientific and technical statements STU. Inform. Telecommun. Manag. 3(80), S. 148–152 (2009)

    Google Scholar 

  23. Thain, D., Tannenbaum, T., Livny, M.: Grid Computing: Making The Global Infrastructure a Reality. Wiley, New York (2003). 1060 p.

    Google Scholar 

  24. Van Der Vorst, H.A.: Parallel linear systems solvers: sparse iterative methods. In: Wesseling, P. (ed.) High Performance Computing in Fluid Dynamics, pp. 173–200. Kluwer, Dordrecht (1996)

    Chapter  Google Scholar 

  25. Voevodin, V.V., Voevodin, Vl.V.: Parallel Computing. BHV-Petersburg, St. Petersburg (2002)

    MATH  Google Scholar 

  26. Walshaw, C., Cross, M., Everett, M.G.: Mesh partitioning and load balancing for distributed memory parallel systems. In: Topping, B.H.V. (ed.) Advances in Computational Mechanics for Parallel & Distributed Processing, pp. 97–104. Saxe-Coburg Publications, Edinburgh (1997)

    Chapter  Google Scholar 

  27. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers. Pearson Education, Upper Saddle River (2005). p. 468

    Google Scholar 

Download references

Acknowledgements

The paper was prepared in SPbETU and is supported by the Contract № 02.G25.31.0149 dated 01.12.2015 (Board of Education of Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Shichkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Shichkina, Y., Kupriyanov, M., Al-Mardi, M. (2016). Optimization Algorithm for an Information Graph for an Amount of Communications. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2016 2016. Lecture Notes in Computer Science(), vol 9870. Springer, Cham. https://doi.org/10.1007/978-3-319-46301-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46301-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46300-1

  • Online ISBN: 978-3-319-46301-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics