Pathophysiology of Traumatic Spinal Cord Injury

  • Sebastien Couillard-Despres
  • Lara Bieler
  • Michael Vogl
Chapter

Abstract

Traumatic spinal cord injury (SCI) is a drama in two acts. The first part represents the trauma itself, causing the destruction of neural tissue, i.e., the elimination of neuronal and glial cells at the primary lesion site, as well as the transection of axons transiting through the lesioned area. Additionally, damage to the vascular system will provoke hemorrhage and the disruption of the blood–spinal cord barrier. Together, these damages will induce secondary cascades responsible for cell death, enlargement of lesioned area, and further loss of neurological functions. Edema will develop in the early ischemic period triggering a phase of glutamate excitotoxicity and ionic imbalance. The ensuing mitochondrial failure is thereafter responsible for an energy depletion and oxidative stress. The rapid inflammatory response to spinal cord injury is provided by the resident microglia, but foremost by the infiltrating neutrophils and macrophages. At the end of the acute phase, the lesioned area will get enclosed and stabilized by a fibroglial scar. This chapter reviews the sequence of pathophysiological processes occurring after traumatic spinal cord injury, which constitute targets for potential protective or regenerative interventions.

Keywords

Spinal Cord Spinal Cord Injury Lesion Site Injured Spinal Cord Wallerian Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    DeVivo MJ, Krause JS, Lammertse DP (1999) Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 80:1411–1419PubMedCrossRefGoogle Scholar
  2. 2.
    DeVivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50:365–372. doi: 10.1038/sc.2011.178 PubMedCrossRefGoogle Scholar
  3. 3.
    Middleton JW, Dayton A, Walsh J et al (2012) Life expectancy after spinal cord injury: a 50-year study. Spinal Cord 50:803–811. doi: 10.1038/sc.2012.55 PubMedCrossRefGoogle Scholar
  4. 4.
    El Tecle NE, Dahdaleh NS, Hitchon PW (2016) Timing of surgery in spinal cord injury. Spine. doi: 10.1097/BRS.0000000000001517 PubMedGoogle Scholar
  5. 5.
    Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12PubMedCrossRefGoogle Scholar
  6. 6.
    Kakulas BA (2004) Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 42:549–563. doi: 10.1038/sj.sc.3101670 PubMedCrossRefGoogle Scholar
  7. 7.
    Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, Kirsch T, Errico TJ (2014) Spinal cord injury models: a review. Spinal Cord 52:588–595. doi:  10.1038/sc.2014.91
  8. 8.
    Salegio EA, Bresnahan JC, Sparrey CJ et al (2016) A unilateral cervical spinal cord contusion injury model in non-human primates (macaca mulatta). J Neurotrauma 33:439–459. doi: 10.1089/neu.2015.3956 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kakulas BA (1999) The applied neuropathology of human spinal cord injury. Spinal Cord 37:79–88PubMedCrossRefGoogle Scholar
  10. 10.
    Dimitrijevic MR, Danner SM, Mayr W (2015) Neurocontrol of movement in humans with spinal cord injury. Artif Organs 39:823–833. doi: 10.1111/aor.12614 PubMedCrossRefGoogle Scholar
  11. 11.
    Blight AR (1983) Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. NSC 10:521–543Google Scholar
  12. 12.
    Eidelberg E, Straehley D, Erspamer R, Watkins CJ (1977) Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries. Exp Neurol 56:312–322PubMedCrossRefGoogle Scholar
  13. 13.
    Fehlings MG, Tator CH (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 132:220–228PubMedCrossRefGoogle Scholar
  14. 14.
    Schoenen J, Grant G (2004) Spinal Cord: Connections. In: The Human Nervous System, 2nd ed. (Paxinos G, Mai JK, eds), Amsterdam: Academic Press. p 1366Google Scholar
  15. 15.
    McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425. doi: 10.1016/S0140-6736(02)07603-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Ditunno JF, Little JW, Tessler A, Burns AS (2004) Spinal shock revisited: a four-phase model. Spinal Cord 42:383–395. doi: 10.1038/sj.sc.3101603 PubMedCrossRefGoogle Scholar
  17. 17.
    Hayes KC, Davies AL, Ashki N et al (2007) Re: Ditunno JF, Little JW, Tessler A, Burns AS (2004) Spinal shock revisited: a four-phase model. Spinal Cord 42:383–395. Spinal Cord 45:395–396. doi: 10.1038/sj.sc.3101981
  18. 18.
    Phillips AA, Krassioukov AV (2015) Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management. J Neurotrauma 32:1927–1942. doi: 10.1089/neu.2015.3903 PubMedCrossRefGoogle Scholar
  19. 19.
    Kwon BK, Tetzlaff W, Grauer JN et al (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4:451–464. doi: 10.1016/j.spinee.2003.07.007 PubMedCrossRefGoogle Scholar
  20. 20.
    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26. doi: 10.3171/jns.1991.75.1.0015 PubMedCrossRefGoogle Scholar
  21. 21.
    Huang L, Lin X, Tang Y et al (2013) Quantitative assessment of spinal cord perfusion by using contrast-enhanced ultrasound in a porcine model with acute spinal cord contusion. Spinal Cord 51:196–201. doi: 10.1038/sc.2012.111 PubMedCrossRefGoogle Scholar
  22. 22.
    Hawryluk G, Whetstone W, Saigal R et al (2015) Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma 32:1958–1967. doi: 10.1089/neu.2014.3778 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang Z, Wang H, Zhou Y, Wang J (2013) sc2012179a. Spinal Cord 51:442–447. doi:  10.1038/sc.2012.179
  24. 24.
    Koyanagi I, Tator CH, Theriault E (1993) Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurgery 32:260–268, – discussion 268PubMedCrossRefGoogle Scholar
  25. 25.
    Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492. doi: 10.3171/jns.1997.86.3.0483 PubMedCrossRefGoogle Scholar
  26. 26.
    Maikos JT, Shreiber DI (2007) Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J Neurotrauma 24:492–507. doi: 10.1089/neu.2006.0149 PubMedCrossRefGoogle Scholar
  27. 27.
    Ito T, Oyanagi K, Wakabayashi K, Ikuta F (1997) Traumatic spinal cord injury: a neuropathological study on the longitudinal spreading of the lesions. Acta Neuropathol 93:13–18PubMedCrossRefGoogle Scholar
  28. 28.
    Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388. doi: 10.1016/j.expneurol.2007.06.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500:267–285. doi: 10.1002/cne.21149 PubMedCrossRefGoogle Scholar
  30. 30.
    Wrathall JR, Teng YD, Choiniere D (1996) Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol 137:119–126. doi: 10.1006/exnr.1996.0012 PubMedCrossRefGoogle Scholar
  31. 31.
    Kahle KT, Simard JM, Staley KJ et al (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265. doi: 10.1152/physiol.00015.2009 CrossRefGoogle Scholar
  32. 32.
    Strange K (1992) Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 3:12–27PubMedGoogle Scholar
  33. 33.
    Young W, Rappaport ZH, Chalif DJ, Flamm ES (1987) Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 18:751–759PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenblum WI (1997) Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J Neurotrauma 14:313–326PubMedCrossRefGoogle Scholar
  35. 35.
    Kwon BK, Streijger F, Fallah N et al (2016) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma neu.2016.4435. doi:  10.1089/neu.2016.4435
  36. 36.
    Profyris C, Cheema SS, Zang D et al (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436. doi: 10.1016/j.nbd.2003.11.015 PubMedCrossRefGoogle Scholar
  37. 37.
    Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221PubMedCrossRefGoogle Scholar
  38. 38.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622. doi: 10.1056/NEJM199403033300907 PubMedCrossRefGoogle Scholar
  39. 39.
    Liu D, Xu GY, Pan E, McAdoo DJ (1999) Neurotoxicity of glutamate at the concentration released upon spinal cord injury. NSC 93:1383–1389Google Scholar
  40. 40.
    Káradóttir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. NSC 145:1426–1438. doi: 10.1016/j.neuroscience.2006.08.070 Google Scholar
  41. 41.
    Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300. doi: 10.1097/00004647-199703000-00006 PubMedCrossRefGoogle Scholar
  42. 42.
    Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412PubMedCrossRefGoogle Scholar
  43. 43.
    Vanzulli I, Butt AM (2015) mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter. Cell Calcium 58:423–430. doi: 10.1016/j.ceca.2015.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774. doi: 10.1089/0897715041269641 PubMedCrossRefGoogle Scholar
  45. 45.
    McAdoo DJ, Hughes MG, Nie L et al (2005) The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage → glutamate release → damage → glutamate release → etc. Brain Res 1038:92–99. doi: 10.1016/j.brainres.2005.01.024 PubMedCrossRefGoogle Scholar
  46. 46.
    LoPachin RM, Gaughan CL, Lehning EJ et al (1999) Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. J Neurophysiol 82:2143–2153PubMedGoogle Scholar
  47. 47.
    Li S, Stys PK (2001) Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. NSC 107:675–683Google Scholar
  48. 48.
    McAdoo DJ, Xu G, Robak G et al (2000) Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. Brain Res 865:283–285PubMedCrossRefGoogle Scholar
  49. 49.
    Springer JE, Azbill RD, Mark RJ et al (1997) 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68:2469–2476PubMedCrossRefGoogle Scholar
  50. 50.
    Volterra A, Trotti D, Floridi S, Racagni G (1994) Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann N Y Acad Sci 738:153–162PubMedCrossRefGoogle Scholar
  51. 51.
    MacDermott AB, Mayer ML, Westbrook GL et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522. doi: 10.1038/321519a0 PubMedCrossRefGoogle Scholar
  52. 52.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  53. 53.
    Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23:623–626. doi: 10.1002/ana.410230618 PubMedCrossRefGoogle Scholar
  54. 54.
    Wada S, Yone K, Ishidou Y et al (1999) Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-D-aspartate receptor antagonist. J Neurosurg 91:98–104PubMedGoogle Scholar
  55. 55.
    Yanase M, Sakou T, Fukuda T (1995) Role of N-methyl-D-aspartate receptor in acute spinal cord injury. J Neurosurg 83:884–888. doi: 10.3171/jns.1995.83.5.0884 PubMedCrossRefGoogle Scholar
  56. 56.
    Chu Z, Hablitz JJ (2000) Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res 879:88–92PubMedCrossRefGoogle Scholar
  57. 57.
    Pandya JD, Nukala VN, Sullivan PG (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 5:10. doi: 10.3389/fnene.2013.00010 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ma M (2013) Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 60:61–79. doi: 10.1016/j.nbd.2013.08.010 PubMedCrossRefGoogle Scholar
  59. 59.
    Stirling DP, Cummins K, Wayne Chen SR, Stys P (2014) Axoplasmic reticulum Ca 2 + release causes secondary degeneration of spinal axons. Ann Neurol 75:220–229. doi: 10.1002/ana.24099 PubMedCrossRefGoogle Scholar
  60. 60.
    Springer JE, Azbill RD, Kennedy SE et al (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69:1592–1600PubMedCrossRefGoogle Scholar
  61. 61.
    Matute C, Sánchez-Gómez MV, Martínez-Millán L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 94:8830–8835PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    McDonald JW, Althomsons SP, Hyrc KL et al (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297PubMedCrossRefGoogle Scholar
  63. 63.
    Matute C, Alberdi E, Domercq M et al (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230PubMedCrossRefGoogle Scholar
  64. 64.
    Tekkök SB, Goldberg MP (2001) Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21:4237–4248PubMedGoogle Scholar
  65. 65.
    Chesler M, Young W, Hassan AZ et al (1994) Elevation and clearance of extracellular K+ following graded contusion of the rat spinal cord. Exp Neurol 125:93–98. doi: 10.1006/exnr.1994.1011 PubMedCrossRefGoogle Scholar
  66. 66.
    Kwo S, Young W, DeCrescito V (1989) Spinal cord sodium, potassium, calcium, and water concentration changes in rats after graded contusion injury. J Neurotrauma 6:13–24PubMedCrossRefGoogle Scholar
  67. 67.
    Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365:42–53PubMedCrossRefGoogle Scholar
  68. 68.
    Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8:35. doi: 10.3389/fnmol.2015.00035 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Faden AI, Pilotte NS, Burt DR (1986) Experimental spinal cord injury: effects of trauma or ischemia on TRH and muscarinic receptors. Neurology 36:723–726PubMedCrossRefGoogle Scholar
  70. 70.
    Haigney MC, Miyata H, Lakatta EG et al (1992) Dependence of hypoxic cellular calcium loading on Na(+)-Ca2+ exchange. Circ Res 71:547–557PubMedCrossRefGoogle Scholar
  71. 71.
    LoPachin RM, Lehning EJ (1997) Mechanism of calcium entry during axon injury and degeneration. Toxicol Appl Pharmacol 143:233–244. doi: 10.1006/taap.1997.8106 PubMedCrossRefGoogle Scholar
  72. 72.
    Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na + channels and Na(+)-Ca2+ exchanger. J Neurosci 12:430–439PubMedGoogle Scholar
  73. 73.
    Regan RF, Choi DW (1991) Glutamate neurotoxicity in spinal cord cell culture. NSC 43:585–591Google Scholar
  74. 74.
    Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Agrawal SK, Fehlings MG (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci 16:545–552PubMedGoogle Scholar
  76. 76.
    Haigney MC, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90:391–399PubMedCrossRefGoogle Scholar
  77. 77.
    Reithmeier RA (1994) Mammalian exchangers and co-transporters. Curr Opin Cell Biol 6:583–594PubMedCrossRefGoogle Scholar
  78. 78.
    Young W (1992) Role of calcium in central nervous system injuries. J Neurotrauma 9(Suppl 1):S9–S25PubMedGoogle Scholar
  79. 79.
    Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:245–256PubMedGoogle Scholar
  80. 80.
    Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine 25:1859–1866PubMedCrossRefGoogle Scholar
  81. 81.
    Banik NL, Matzelle D, Gantt-Wilford G, Hogan EL (1997) Role of calpain and its inhibitors in tissue degeneration and neuroprotection in spinal cord injury. Ann N Y Acad Sci 825:120–127PubMedCrossRefGoogle Scholar
  82. 82.
    Banik NL, Shields DC, Ray S et al (1998) Role of calpain in spinal cord injury: effects of calpain and free radical inhibitors. Ann N Y Acad Sci 844:131–137PubMedCrossRefGoogle Scholar
  83. 83.
    Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190PubMedCrossRefGoogle Scholar
  84. 84.
    Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim Biophys Acta 1762:181–190. doi: 10.1016/j.bbadis.2005.10.006 PubMedCrossRefGoogle Scholar
  85. 85.
    McEwen ML, Sullivan PG, Rabchevsky AG, Springer JE (2011) Targeting mitochondrial function for the treatment of acute spinal cord injury. Neurotherapeutics 8:168–179. doi: 10.1007/s13311-011-0031-7 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493PubMedCrossRefGoogle Scholar
  87. 87.
    Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360PubMedGoogle Scholar
  88. 88.
    Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723. doi: 10.1016/j.beem.2012.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cao Y, Lv G, Wang Y-S et al (2013) Mitochondrial fusion and fission after spinal cord injury in rats. Brain Res 1522:59–66. doi: 10.1016/j.brainres.2013.05.033 PubMedCrossRefGoogle Scholar
  90. 90.
    Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2004) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79:231–239. doi: 10.1002/jnr.20292 CrossRefGoogle Scholar
  91. 91.
    Duchen MR (1992) Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283(Pt 1):41–50PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Braughler JM, Duncan LA, Goodman T (1985) Calcium enhances in vitro free radical-induced damage to brain synaptosomes, mitochondria, and cultured spinal cord neurons. J Neurochem 45:1288–1293PubMedCrossRefGoogle Scholar
  93. 93.
    Hansson MJ, Månsson R, Mattiasson G et al (2004) Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem 89:715–729. doi: 10.1111/j.1471-4159.2004.02400.x PubMedCrossRefGoogle Scholar
  94. 94.
    Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: an update. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2016.02.012 PubMedGoogle Scholar
  95. 95.
    Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174PubMedCrossRefGoogle Scholar
  96. 96.
    Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. doi: 10.1038/nature02229 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840PubMedGoogle Scholar
  98. 98.
    Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47PubMedCrossRefGoogle Scholar
  99. 99.
    Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277:3622–3636. doi: 10.1111/j.1742-4658.2010.07754.x PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lushchak VI (2015) Free radicals, reactive oxygen species, oxidative stresses and their classifications. UkrBiochemJ 87:11–18. doi: 10.15407/ubj87.06.011 Google Scholar
  102. 102.
    Hall ED (2011) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8:152–167. doi: 10.1007/s13311-011-0026-4 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hall ED, Wang JA, Bosken JM, Singh IN (2015) Lipid peroxidation in brain or spinal cord mitochondria after injury. J Bioenerg Biomembr. doi: 10.1007/s10863-015-9600-5 Google Scholar
  104. 104.
    Vaishnav RA, Singh IN, Miller DM, Hall ED (2010) Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function. J Neurotrauma 27:1311–1320. doi: 10.1089/neu.2009.1172 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100:639–649. doi: 10.1111/j.1471-4159.2006.04312.x PubMedCrossRefGoogle Scholar
  106. 106.
    Rohn TT, Hinds TR, Vincenzi FF (1993) Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol 46:525–534PubMedCrossRefGoogle Scholar
  107. 107.
    Rohn TT, Hinds TR, Vincenzi FF (1996) Inhibition of Ca2 + -pump ATPase and the Na+/K + -pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol 51:471–476PubMedCrossRefGoogle Scholar
  108. 108.
    Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159PubMedGoogle Scholar
  109. 109.
    Zhang B, Gensel JC (2014) Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 258:112–120. doi: 10.1016/j.expneurol.2014.04.007 PubMedCrossRefGoogle Scholar
  110. 110.
    Gris D, Hamilton EF, Weaver LC (2008) The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Exp Neurol 211:259–270. doi: 10.1016/j.expneurol.2008.01.033 PubMedCrossRefGoogle Scholar
  111. 111.
    Fleming JC, Bailey CS, Hundt H et al (2012) Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. J Trauma Acute Care Surg 72:1194–1201; discussion 1202. doi: 10.1097/TA.0b013e31824d68bd
  112. 112.
    Sauerbeck AD, Laws JL, Bandaru VVR et al (2015) Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 32:159–169. doi: 10.1089/neu.2014.3497 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Peterson SL, Anderson AJ (2014) Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 258:35–47. doi: 10.1016/j.expneurol.2014.04.028 PubMedCrossRefGoogle Scholar
  114. 114.
    Anderson AJ, Robert S, Huang W et al (2004) Activation of complement pathways after contusion-induced spinal cord injury. J Neurotrauma 21:1831–1846. doi: 10.1089/neu.2004.21.1831 PubMedCrossRefGoogle Scholar
  115. 115.
    Brennan FH, Gordon R, Lao HW et al (2015) The complement receptor C5aR controls acute inflammation and astrogliosis following spinal cord injury. J Neurosci 35:6517–6531. doi: 10.1523/JNEUROSCI.5218-14.2015 PubMedCrossRefGoogle Scholar
  116. 116.
    Dibaj P, Nadrigny F, Steffens H et al (2010) NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 58:1133–1144. doi: 10.1002/glia.20993 PubMedCrossRefGoogle Scholar
  117. 117.
    Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi: 10.1038/nn1472 PubMedCrossRefGoogle Scholar
  118. 118.
    Yang L, Blumbergs PC, Jones NR et al (2004) Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine 29:966–971PubMedCrossRefGoogle Scholar
  119. 119.
    Bastien D, Lacroix S (2014) Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 258:62–77. doi: 10.1016/j.expneurol.2014.04.006 PubMedCrossRefGoogle Scholar
  120. 120.
    Prüss H, Kopp MA, Brommer B et al (2011) Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol 21:652–660. doi: 10.1111/j.1750-3639.2011.00488.x PubMedCrossRefGoogle Scholar
  121. 121.
    Fleming JC, Norenberg MD, Ramsay DA et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269. doi: 10.1093/brain/awl296 PubMedCrossRefGoogle Scholar
  122. 122.
    Allen C, Thornton P, Denes A et al (2012) Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol 189:381–392. doi: 10.4049/jimmunol.1200409 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Neirinckx V, Coste C, Franzen R et al (2014) Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 11:150. doi: 10.1186/s12974-014-0150-2 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Nguyen MD, Boudreau M, Kriz J et al (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23:2131–2140PubMedGoogle Scholar
  125. 125.
    Carlson SL, Parrish ME, Springer JE et al (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:77–88. doi: 10.1006/exnr.1998.6785 PubMedCrossRefGoogle Scholar
  126. 126.
    Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34:6316–6322. doi: 10.1523/JNEUROSCI.4912-13.2014 PubMedCrossRefGoogle Scholar
  127. 127.
    Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464PubMedCrossRefGoogle Scholar
  128. 128.
    Popovich PG, Hickey WF (2001) Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol 60:676–685PubMedCrossRefGoogle Scholar
  129. 129.
    David S, Greenhalgh AD, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318. doi: 10.1016/j.neuroscience.2015.08.064 PubMedCrossRefGoogle Scholar
  130. 130.
    Kaser-Eichberger A, Schroedl F, Bieler L et al (2016) Expression of lymphatic markers in the adult Rat spinal cord. Front Cell Neurosci 10:23. doi: 10.3389/fncel.2016.00023 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wang X, Cao K, Sun X et al (2015) Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 63:635–651. doi: 10.1002/glia.22774 PubMedCrossRefGoogle Scholar
  132. 132.
    Kroner A, Greenhalgh AD, Zarruk JG et al (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116. doi: 10.1016/j.neuron.2014.07.027 PubMedCrossRefGoogle Scholar
  133. 133.
    Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444. doi: 10.1523/JNEUROSCI.3257-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311PubMedCrossRefGoogle Scholar
  135. 135.
    Knoblach SM, Faden AI (1998) Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 153:143–151. doi: 10.1006/exnr.1998.6877 PubMedCrossRefGoogle Scholar
  136. 136.
    Thompson CD, Zurko JC, Hanna BF et al (2013) The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 30:1311–1324. doi: 10.1089/neu.2012.2651 PubMedCrossRefGoogle Scholar
  137. 137.
    Zhou Z, Peng X, Insolera R et al (2009) IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol 220:183–190. doi: 10.1016/j.expneurol.2009.08.018 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Barrette B, Hébert M-A, Filali M et al (2008) Requirement of myeloid cells for axon regeneration. J Neurosci 28:9363–9376. doi: 10.1523/JNEUROSCI.1447-08.2008 PubMedCrossRefGoogle Scholar
  139. 139.
    Shechter R, London A, Varol C et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113. doi: 10.1371/journal.pmed.1000113 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Stirling DP, Liu S, Kubes P, Yong VW (2009) Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 29:753–764. doi: 10.1523/JNEUROSCI.4918-08.2009 PubMedCrossRefGoogle Scholar
  141. 141.
    Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438PubMedCrossRefGoogle Scholar
  142. 142.
    Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22:295–299PubMedCrossRefGoogle Scholar
  143. 143.
    Rapalino O, Lazarov-Spiegler O, Agranov E et al (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821PubMedCrossRefGoogle Scholar
  144. 144.
    Mietto BS, Mostacada K, Martinez AMB (2015) MI2015-251204. Mediator Inflamm 1–14. doi:  10.1155/2015/251204
  145. 145.
    Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110. doi: 10.1186/1742-2094-8-110 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399. doi: 10.1038/nrn3053 PubMedCrossRefGoogle Scholar
  147. 147.
    Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18. doi: 10.1083/jcb.201108111 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Williams PR, Marincu B-N, Sorbara CD et al (2014) A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat Commun 5:5683. doi: 10.1038/ncomms6683 PubMedCrossRefGoogle Scholar
  149. 149.
    Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572–577. doi: 10.1038/nm1229 PubMedCrossRefGoogle Scholar
  150. 150.
    Ward RE, Huang W, Kostusiak M et al (2014) A characterization of white matter pathology following spinal cord compression injury in the rat. NSC 1–13. doi: 10.1016/j.neuroscience.2013.12.024
  151. 151.
    Ertürk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27:9169–9180. doi: 10.1523/JNEUROSCI.0612-07.2007 PubMedCrossRefGoogle Scholar
  152. 152.
    Beirowski B, Adalbert R, Wagner D et al (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 6:6. doi: 10.1186/1471-2202-6-6 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Chaudhry V, Cornblath DR (1992) Wallerian degeneration in human nerves: serial electrophysiological studies. Muscle Nerve 15:687–693. doi: 10.1002/mus.880150610 PubMedCrossRefGoogle Scholar
  154. 154.
    Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898. doi: 10.1038/nrn1788 PubMedCrossRefGoogle Scholar
  155. 155.
    Sievers C, Platt N, Perry VH et al (2003) Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res 46:161–169PubMedCrossRefGoogle Scholar
  156. 156.
    Sagot Y, Dubois-Dauphin M, Tan SA et al (1995) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 15:7727–7733PubMedGoogle Scholar
  157. 157.
    Whitmore AV, Lindsten T, Raff MC, Thompson CB (2003) The proapoptotic proteins Bax and Bak are not involved in Wallerian degeneration. Cell Death Differ 10:260–261. doi: 10.1038/sj.cdd.4401147 PubMedCrossRefGoogle Scholar
  158. 158.
    Totoiu MO, Keirstead HS (2005) Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 486:373–383. doi: 10.1002/cne.20517 PubMedCrossRefGoogle Scholar
  159. 159.
    Xu G-Y, Hughes MG, Ye Z et al (2004) Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp Neurol 187:329–336. doi: 10.1016/j.expneurol.2004.01.029 PubMedCrossRefGoogle Scholar
  160. 160.
    Xu GY, Liu S, Hughes MG, McAdoo DJ (2008) Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. NSC 153:1034–1047. doi: 10.1016/j.neuroscience.2008.02.065 Google Scholar
  161. 161.
    Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022PubMedCrossRefGoogle Scholar
  162. 162.
    Yune TY, Chang MJ, Kim SJ et al (2003) Increased production of tumor necrosis factor-alpha induces apoptosis after traumatic spinal cord injury in rats. J Neurotrauma 20:207–219. doi: 10.1089/08977150360547116 PubMedCrossRefGoogle Scholar
  163. 163.
    Balabanov R, Strand K, Goswami R et al (2007) Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J Neurosci 27:2013–2024. doi: 10.1523/JNEUROSCI.4689-06.2007 PubMedCrossRefGoogle Scholar
  164. 164.
    Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286PubMedCrossRefGoogle Scholar
  165. 165.
    Crowe MJ, Bresnahan JC, Shuman SL et al (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76PubMedCrossRefGoogle Scholar
  166. 166.
    Warden P, Bamber NI, Li H et al (2001) Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Exp Neurol 168:213–224. doi: 10.1006/exnr.2000.7622 PubMedCrossRefGoogle Scholar
  167. 167.
    Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925. doi: 10.1089/neu.2000.17.915 PubMedCrossRefGoogle Scholar
  168. 168.
    Li GL, Farooque M, Holtz A, Olsson Y (1999) Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol 98:473–480PubMedCrossRefGoogle Scholar
  169. 169.
    Almad A, Sahinkaya FR, McTigue DM (2011) Oligodendrocyte fate after spinal cord injury. Neurotherapeutics 8:262–273. doi: 10.1007/s13311-011-0033-5 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Bastien D, Bellver Landete V, Lessard M et al (2015) IL-1 gene deletion protects oligodendrocytes after spinal cord injury through upregulation of the survival factor tox3. J Neurosci 35:10715–10730. doi: 10.1523/JNEUROSCI.0498-15.2015 PubMedCrossRefGoogle Scholar
  171. 171.
    Yan P, Li Q, Kim GM et al (2001) Cellular localization of tumor necrosis factor-alpha following acute spinal cord injury in adult rats. J Neurotrauma 18:563–568. doi: 10.1089/089771501300227369 PubMedCrossRefGoogle Scholar
  172. 172.
    Ferguson AR, Christensen RN, Gensel JC et al (2008) Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J Neurosci 28:11391–11400. doi: 10.1523/JNEUROSCI.3708-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Probert L, Eugster HP, Akassoglou K et al (2000) TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123(Pt 10):2005–2019PubMedCrossRefGoogle Scholar
  174. 174.
    Genovese T, Mazzon E, Crisafulli C et al (2008) TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome. Shock 29:32–41. doi: 10.1097/shk.0b013e318059053a PubMedGoogle Scholar
  175. 175.
    Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. NSC 103:203–218Google Scholar
  176. 176.
    Casha S, Yu WR, Fehlings MG (2005) FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 196:390–400. doi: 10.1016/j.expneurol.2005.08.020 PubMedCrossRefGoogle Scholar
  177. 177.
    Nagata S, Golstein P (1995) The fas death factor. Science 267:1449–1456PubMedCrossRefGoogle Scholar
  178. 178.
    Demjen D, Klussmann S, Kleber S et al (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10:389–395. doi: 10.1038/nm1007 PubMedCrossRefGoogle Scholar
  179. 179.
    Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23:264–280. doi: 10.1089/neu.2006.23.263 PubMedGoogle Scholar
  180. 180.
    Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 46:251–264. doi: 10.1007/s12035-012-8287-4 PubMedCrossRefGoogle Scholar
  181. 181.
    Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. doi: 10.1016/j.tins.2009.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156. doi: 10.1038/nrn1326 PubMedCrossRefGoogle Scholar
  183. 183.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321. doi: 10.1038/nature07039 PubMedCrossRefGoogle Scholar
  184. 184.
    Goritz C, Dias DO, Tomilin N et al (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242. doi: 10.1126/science.1203165 PubMedCrossRefGoogle Scholar
  185. 185.
    Wanner IB, Deik A, Torres M et al (2008) A new in vitro model of the glial scar inhibits axon growth. Glia 56:1691–1709. doi: 10.1002/glia.20721 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Giger RJ, Hollis ER, Tuszynski MH (2010) Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2:a001867. doi: 10.1101/cshperspect.a001867 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Falci SP, Indeck C, Lammertse DP (2009) Posttraumatic spinal cord tethering and syringomyelia: surgical treatment and long-term outcome. J Neurosurg Spine 11:445–460. doi: 10.3171/2009.4.SPINE09333 PubMedCrossRefGoogle Scholar
  188. 188.
    Zeinalizadeh M, Miri SM, Ardalan FA et al (2014) Reduction of epidural fibrosis and dural adhesions after lamina reconstruction by absorbable cement: an experimental study. Spine J 14:113–118. doi: 10.1016/j.spinee.2013.06.065 PubMedCrossRefGoogle Scholar
  189. 189.
    Bush TG, Puvanachandra N, Horner CH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308PubMedCrossRefGoogle Scholar
  190. 190.
    Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241. doi: 10.1038/nrn2591 PubMedCrossRefGoogle Scholar
  191. 191.
    Anderson MA, Burda JE, Ren Y et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature. doi: 10.1038/nature17623 Google Scholar
  192. 192.
    Liu M, Wu W, Li H et al (2015) Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med 38:745–753. doi: 10.1179/2045772314Y.0000000224 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Wang Y, Wang H, Tao Y et al (2014) Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101. doi: 10.1016/j.neuroscience.2014.02.007 PubMedCrossRefGoogle Scholar
  194. 194.
    Wang Y, Wang J, Yang H et al (2015) Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224–232. doi: 10.1016/j.neuroscience.2014.12.061 PubMedCrossRefGoogle Scholar
  195. 195.
    Hill CE, Beattie MS, Bresnahan JC (2001) Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol 171:153–169. doi: 10.1006/exnr.2001.7734 PubMedCrossRefGoogle Scholar
  196. 196.
    Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25:532–537PubMedCrossRefGoogle Scholar
  197. 197.
    Ehlers MD (2004) Deconstructing the axon: Wallerian degeneration and the ubiquitin-proteasome system. Trends Neurosci 27:3–6. doi: 10.1016/j.tins.2003.10.015 PubMedCrossRefGoogle Scholar
  198. 198.
    Ju G, Wang J, Wang Y, Zhao X (2014) Spinal cord contusion. Neural Regen Res 9:789–794. doi: 10.4103/1673-5374.131591 PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Fan H, Zhang K, Shan L et al (2016) Reactive astrocytes undergo M1 microglia/macrophages-induced necroptosis in spinal cord injury. Mol Neurodegener 11:14. doi: 10.1186/s13024-016-0081-8 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268. doi: 10.1016/j.ceb.2009.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Krebs J, Koch HG, Hartmann K, Frotzler A (2015) Krebs 1–4. doi: 10.1038/sc.2015.218
  202. 202.
    Klekamp J (2012) Treatment of posttraumatic syringomyelia. J Neurosurg Spine 17:199–211. doi: 10.3171/2012.5.SPINE11904 PubMedCrossRefGoogle Scholar
  203. 203.
    Brodbelt AR, Stoodley MA, Watling AM et al (2003) Fluid flow in an animal model of post-traumatic syringomyelia. Eur Spine J 12:300–306. doi: 10.1007/s00586-002-0492-9 PubMedGoogle Scholar
  204. 204.
    Greitz D (2006) Unraveling the riddle of syringomyelia. Neurosurg Rev 29:251–264. doi: 10.1007/s10143-006-0029-5 PubMedCrossRefGoogle Scholar
  205. 205.
    Williams B, Terry AF, Jones HWF, McSweeney T (1981) Syringomyelia as a sequel to traumatic paraplegia. Paraplegia 19:67–80. doi: 10.1038/sc.1981.18 PubMedCrossRefGoogle Scholar
  206. 206.
    Perrouin-Verbe B, Lenne-Aurier K, Robert R et al (1998) Post-traumatic syringomyelia and post-traumatic spinal canal stenosis: a direct relationship: review of 75 patients with a spinal cord injury. Spinal Cord 36:137–143PubMedCrossRefGoogle Scholar
  207. 207.
    Wong JHY, Song X, Hemley SJ et al (2016) Direct-trauma model of posttraumatic syringomyelia with a computer-controlled motorized spinal cord impactor. J Neurosurg Spine 24(5):797–805. doi: 10.3171/2015.10.SPINE15742 PubMedCrossRefGoogle Scholar
  208. 208.
    Hemley SJ, Tu J, Stoodley MA (2009) Role of the blood-spinal cord barrier in posttraumatic syringomyelia. J Neurosurg Spine 11:696–704. doi: 10.3171/2009.6.SPINE08564 PubMedCrossRefGoogle Scholar
  209. 209.
    Hemley SJ, Bilston LE, Cheng S et al (2013) Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma 30:1457–1467. doi: 10.1089/neu.2012.2614 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sebastien Couillard-Despres
    • 1
  • Lara Bieler
    • 1
  • Michael Vogl
    • 1
  1. 1.Paracelsus Medical University, Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS)SalzburgAustria

Personalised recommendations