Psychopathology of Everyday Life in the 21st Century: Smartphone Addiction

Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)


In recent years as the prevalence of smartphones has increased, so too has excessive smartphone use become a prominent social issue. “Smartphone addiction” is one form of a more general technological addiction. In this chapter, we review the evolution of substance and behavioural addiction through an examination of the process for the diagnosis of mental illness. We introduce four common factors between smartphone addiction, and other forms of addiction, diagnostic criteria, and a mobile application (App) to identify smartphone addiction.


Withdrawal Symptom Empirical Mode Decomposition Short Message Service Internet Addiction Online Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington D.CGoogle Scholar
  2. Billieux J, Van der Linden M, d’Acremont M et al (2007) Does impulsivity relate to perceived dependence on and actual use of the mobile phone? Appl Cogn Psychol 21:527–537CrossRefGoogle Scholar
  3. Block JJ (2008) Issues for DSM-V: internet addiction. Am J Psychiatry 165:306–307CrossRefGoogle Scholar
  4. Cajochen C, Frey S, Anders D et al (2011) Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol 110:1432–1438CrossRefGoogle Scholar
  5. Chen SH, Weng LJ, Su YJ et al (2003) Development of Chinese internet addiction scale and its psychometric study. Chin J Psychol 45:279–294Google Scholar
  6. Chittaranjan G, Blom J, Gatica-Perez D (2013) Mining large-scale smartphone data for personality studies. Pers Ubiquit Comput 17(3):433–450CrossRefGoogle Scholar
  7. Das DA, Grimmer KA, Sparnon AL et al (2005) The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: a randomized controlled trial [ISRCTN87413556]. BMC Pediatr 5:1CrossRefGoogle Scholar
  8. Ewing JA (1984) Detecting alcoholism. The CAGE questionnaire. JAMA 252:1905–1907CrossRefGoogle Scholar
  9. Fagerstrom KO, Schneider NG (1989) Measuring nicotine dependence: a review of the fagerstrom tolerance questionnaire. J Behav Med 12:159–182CrossRefGoogle Scholar
  10. Gau SS, Liu CY, Lee CS et al (2005) Development of a chinese version of the Yale-Brown obsessive compulsive scale for heavy drinking. Alcohol Clin Exp Res 29:1172–1179CrossRefGoogle Scholar
  11. Gilman L, Cage DN, Horn A et al (2015) Tendon rupture associated with excessive smartphone gaming. JAMA Intern Med 175:1048–1049CrossRefGoogle Scholar
  12. Griffiths M (1996) Gambling on the internet: a brief note. J Gambl Stud 12:471–473CrossRefGoogle Scholar
  13. Haik J, Tessone A, Nota A et al (2006) The use of video capture virtual reality in burn rehabilitation: the possibilities. J Burn Care Res 27:195–197CrossRefGoogle Scholar
  14. Hodgins DC, Currie SR, el-Guebaly N (2001) Motivational enhancement and self-help treatments for problem gambling. J Consult Clin Psychol 69: 50–57Google Scholar
  15. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Society London Ser A: Math, Phys Eng Sci 454:903–995MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kim D, Lee Y, Lee J et al (2014) Development of Korean smartphone addiction proneness scale for youth. PLoS ONE 9:e97920CrossRefGoogle Scholar
  17. Klauer SG, Guo F, Simons-Morton BG et al (2014) Distracted driving and risk of road crashes among novice and experienced drivers. N Engl J Med 370:54–59CrossRefGoogle Scholar
  18. Ko CH, Yen JY, Chen CC et al (2005) Proposed diagnostic criteria of internet addiction for adolescents. J Nerv Ment Dis 193:728–733CrossRefGoogle Scholar
  19. Ko CH, Yen JY (2014) The criteria to diagnose internet gaming disorder from causal online gamer. Addiction 109:1411–1412CrossRefGoogle Scholar
  20. Kwon M, Lee JY, Won WY et al (2013a) Development and validation of a smartphone addiction scale (SAS). PLoS ONE 8:e56936CrossRefGoogle Scholar
  21. Kwon M, Kim DJ, Cho H et al (2013b) The smartphone addiction scale: development and validation of a short version for adolescents. PLoS ONE 8:e83558CrossRefGoogle Scholar
  22. Lee H, Ahn H, Choi S et al (2014) The SAMS: smartphone addiction management system and verification. J Med Syst 38:1CrossRefGoogle Scholar
  23. Liu CH, Lin SH, Pan YC et al (2016) Smartphone gaming and frequent use pattern associated with smartphone addiction. Medicine 95(28):e4068CrossRefGoogle Scholar
  24. Lin YH, Gau SS (2013) Association between morningness-eveningness and the severity of compulsive internet use: the moderating role of gender and parenting style. Sleep Med 14:1398–1404CrossRefGoogle Scholar
  25. Lin YH, Chang LR, Lee YH et al (2014) Development and validation of the smartphone addiction inventory (SPAI). PLoS ONE 9:e98312CrossRefGoogle Scholar
  26. Lin YH, Lin YC, Lee YH et al (2015) Time distortion associated with smartphone addiction: identifying smartphone addiction via a mobile application (App). J Psychiatr Res 65:139–145CrossRefGoogle Scholar
  27. Lin YH, Chiang CL, Lin PH et al (2016a) Proposed diagnostic criteria for smartphone addiction. PLoS One (in press)Google Scholar
  28. Lin YH, Lin PH, Chiang CL et al (2016b) Incorporation of mobile application (App) measures into the diagnosis of smartphone addiction. J Clin Psychiatry. (in press)Google Scholar
  29. Market Intelligence and Consulting Institute (2015) Taiwan digital games market survey, spring 2015.
  30. Markowetz A, Błaszkiewicz K, Montag C et al (2014) Psycho-informatics: big data shaping modern psychometrics. Med Hypotheses 82(4):405–411CrossRefGoogle Scholar
  31. Maslow AH (1943) A theory of human motivation. Psychol Rev 50:370–396CrossRefGoogle Scholar
  32. Metcalf O, Pammer K (2014) Impulsivity and related neuropsychological features in regular and addictive first person shooter gaming. Cyberpsychol Behav Soc Netw 17:147–152CrossRefGoogle Scholar
  33. Miller G (2012) The smartphone psychology manifesto. Perspect Psychol Sci 7(3):221–237CrossRefGoogle Scholar
  34. Montag C, Błaszkiewicz K, Lachmann B et al (2014) Correlating personality and actual phone usage: evidence from psychoinformatics. J Individ Differ 3:158–165CrossRefGoogle Scholar
  35. Montag C, Błaszkiewicz K, Lachmann B et al (2015a) Recorded behavior as a valuable resource for diagnostics in mobile phone addiction: evidence from psychoinformatics. Behav Sci 5:434–442CrossRefGoogle Scholar
  36. Montag C, Błaszkiewicz K, Sariyska R et al (2015b) Smartphone usage in the 21st century: who is active on WhatsApp? BMC Rres Notes 8(1):331CrossRefGoogle Scholar
  37. Montag C, Duke É, Markowetz A. (2016). Toward psychoinformatics: computer science meets psychology. Comput Math Methods Med, 2016Google Scholar
  38. Olsen CM (2011) Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 61:1109–1122CrossRefGoogle Scholar
  39. Onnela JP, Rauch SL (2016) Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology. 41(7):1691–1696CrossRefGoogle Scholar
  40. Petry NM, Ammerman Y, Bohl J et al (2006) Cognitive-behavioral therapy for pathological gamblers. J Consult Clin Psychol 74:555–567CrossRefGoogle Scholar
  41. Petry NM, Weinstock J, Ledgerwood DM et al (2008) A randomized trial of brief interventions for problem and pathological gamblers. J Consult Clin Psychol 76:318–328CrossRefGoogle Scholar
  42. Petry NM, Rehbein F, Gentile DA et al (2014) An international consensus for assessing Internet gaming disorder using the new DSM-5 approach. Addiction 109:1399–1406CrossRefGoogle Scholar
  43. Potenza MN, Leung HC, Blumberg HP et al (2003) An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry 160:1990–1994CrossRefGoogle Scholar
  44. Rau PL, Peng SY, Yang CC (2006) Time distortion for expert and novice online game players. Cyberpsychol Behav 9:396–403CrossRefGoogle Scholar
  45. Slutske WS, Eisen S, True WR et al (2000) Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch Gen Psychiatry 57:666–673CrossRefGoogle Scholar
  46. Suler J (2004) The online disinhibition effect. Cyberpsychol Behav 7:321–326CrossRefGoogle Scholar
  47. Sussman S, Moran MB (2013) Hidden addiction: Television. J Behav Addict 2: 125-132Google Scholar
  48. Vollmer C, Michel U, Randler C (2012) Outdoor light at night (LAN) is correlated with eveningness in adolescents. Chronobiol Int 29:502–508CrossRefGoogle Scholar
  49. Wu Z, Huang NE, Long SR et al (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci U S A 104:14889–14894CrossRefGoogle Scholar
  50. Wolf M (2015) Activate tech and media outlook 2016. Wall street journal’s conference,15 October 2015.
  51. Yarkoni T (2012) Psychoinformatics new horizons at the interface of the psychological and computing sciences. Curr Dir Psychol Sci 21(6):391–397CrossRefGoogle Scholar
  52. Yen CF, Tang TC, Yen JY et al (2009) Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. J Adolesc 32:863–873CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of PsychiatryNational Taiwan University HospitalTaipeiTaiwan
  2. 2.Department of BiostatisticsColumbia Mailman School of Public HealthNew YorkUSA
  3. 3.Institute of Brain ScienceNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations