The Impact of Psychoinformatics on Internet Addiction Including New Evidence

  • Christian Montag
  • Martin Reuter
  • Alexander Markowetz
Chapter
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

Psychoinformatics refers to the new collaboration between the disciplines computer science and psychology to study psychological phenotypes by means of data mining. This chapter gives an overview of how Psychoinformatics can aid research and therapy in the context of Internet addiction.

Keywords

Internet Addiction Online Session Short Text Message Longe Time Window Present Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beck AT (2002) Cognitive models of depression. Clin Adv Cogn Psychother Theor Appl 14:29–61Google Scholar
  2. Bian M, Leung L (2015) Linking loneliness, shyness, smartphone addiction symptoms, and patterns of smartphone use to social capital. Soc Sci Comput Rev 33(1):61–79CrossRefGoogle Scholar
  3. Campion MA, Pursell ED, Brown BK (1988) Structured interviewing: raising the psychometric properties of the employment interview. Pers Psychol 41:25–42CrossRefGoogle Scholar
  4. Edwards AL (1957) The social desirability variable in personality assessment and research. Dryden Press, USAGoogle Scholar
  5. Jenaro C, Flores N, Gómez-Vela M et al (2007) Problematic internet and cell-phone use: Psychological, behavioral, and health correlates. Addict Res Theor 15:309–320CrossRefGoogle Scholar
  6. Johnson TP, van de Vijver FJ (2003) Social desirability in cross-cultural research. Cross Cult Surv Methods 195–204Google Scholar
  7. Kim K, Ryu E, Chon MY et al (2006) Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: a questionnaire survey. Int J Nurs Stud 43:185–192CrossRefGoogle Scholar
  8. Kern ML, Eichstaedt JC, Schwartz HA, Dziurzynski L, Ungar LH, Stillwell DJ, Seligman, ME et al (2014) The online social self an open vocabulary approach to personality. Assessment 21(2):158–169Google Scholar
  9. Kwon M, Kim DJ, Cho H, Yang S (2013a) The smartphone addiction scale: development and validation of a short version for adolescents. PloS one 8(12):e83558Google Scholar
  10. Kwon M, Lee JY, Won WY, Park JW, Min JA, Hahn C, Kim DJ (2013b) Development and validation of a smartphone addiction scale (SAS). PloS one 8(2):e56936Google Scholar
  11. Markowetz A, Błaszkiewicz K, Montag C et al (2014) Psycho-informatics: big data shaping modern psychometrics. Med Hypotheses 82:405–411CrossRefGoogle Scholar
  12. Miller PR, Dasher R, Collins R et al (2001) Inpatient diagnostic assessments: 1. Accuracy of structured vs. unstructured interviews. Psychiatry Res 105:255–264CrossRefGoogle Scholar
  13. Montag C, Bey K, Sha P, Li M, Chen YF, Liu WY, Reuter M (2015a) Is it meaningful to distinguish between generalized and specific Internet addiction? Evidence from a cross-cultural study from Germany. Asia Pac Psychiatry 7(1):20–26. Taiwan and China, SwedenGoogle Scholar
  14. Montag C, Błaszkiewicz K, Sariyska R, Lachmann B, Andone I, Trendafilov B, Markowetz A et al (2015b) Smartphone usage in the 21st century: who is active on WhatsApp?. BMC Res Notes, 8(1):331Google Scholar
  15. Montag C, Blaskiewicz K, Lachmann B, Sariyska R, Andone I, Trendafilov B, Markowetz A (2015c) Recorded behavior as a valuable resource for psychodiagnostics in mobile phone addiction: evidence from psychoinformatics. Beh Sci 5:434–442CrossRefGoogle Scholar
  16. Montag C, Błaszkiewicz K, Lachmann B et al. (2014) Correlating personality and actual phone usage: evidence from psychoinformatics. J Ind Differ, 35:158–165Google Scholar
  17. Montag C, Duke É, Markowetz A (2016) Towards psychoinformatics: computer science meets psychology. Comput Math Methods Med 2016, Article ID 2983685Google Scholar
  18. Montag C, Sindermann C, Becker B, Panksepp J (in press) An affective neuroscience framework for the molecular study of Internet addiction. Front PsycholGoogle Scholar
  19. Onnela JP, Rauch SL (2016) Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology. doi: 10.1038/npp.2016.7 Google Scholar
  20. Park MH, Park EJ, Choi J et al (2011) Preliminary study of internet addiction and cognitive function in adolescents based on IQ tests. Psychiatry Res 190:275–281CrossRefGoogle Scholar
  21. Potter J, Hepburn A (2005) Qualitative interviews in psychology: problems and possibilities. Qual Res Psychol 2:281–307CrossRefGoogle Scholar
  22. Riskind JH, Beck AT, Berchick RJ et al (1987) Reliability of DSM-III diagnoses for major depression and generalized anxiety disorder using the structured clinical interview for DSM-III. Arch Gen Psychiatry 44:817CrossRefGoogle Scholar
  23. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, Mohr DC (2015) Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J Med Int Res 17(7):e175Google Scholar
  24. Schmidt FL, Hunter JE (1998) The validity and utility of selection methods in personnel psychology: practical and theoretical implications of 85 years of research findings. Psychol Bull 124:262CrossRefGoogle Scholar
  25. Schwartz HA, Eichstaedt JC, Kern ML, Dziurzynski L, Ramones SM, Agrawal M, Ungar LH et al (2013) Personality, gender, and age in the language of social media: the open-vocabulary approach. PloS one 8(9):e73791Google Scholar
  26. Sugarman DB, Hotaling GT (1997) Intimate violence and social desirability a meta-analytic review. J Int Violence 12:275–290CrossRefGoogle Scholar
  27. Tao R, Huang X, Wang J et al (2010) Proposed diagnostic criteria for internet addiction. Addiction 105:556–564CrossRefGoogle Scholar
  28. Wiesner WH, Cronshaw SF (1988) A meta-analytic investigation of the impact of interview format and degree of structure on the validity of the employment interview. J Occup Psychol 61:275–290CrossRefGoogle Scholar
  29. Wright JH, Beck AT (1983) Cognitive therapy of depression: theory and practice. Psychiatric Serv 34:1119–1127CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Christian Montag
    • 1
    • 2
  • Martin Reuter
    • 3
  • Alexander Markowetz
    • 4
  1. 1.Institute of Psychology and EducationUlm UniversityUlmGermany
  2. 2.University of Electronic Science and Technology of ChinaChengduChina
  3. 3.Department of PsychologyUniversity of BonnBonnGermany
  4. 4.Institute of Computer ScienceUniversity of BonnBonnGermany

Personalised recommendations