Skip to main content

Desert Crusts

  • Chapter
  • First Online:

Abstract

A significant fraction of the world’s land surface is covered by arid and semiarid land. Desert crusts, microbial communities formed from cyanobacteria, algae, fungi, and bacteria, are important ecosystems that stabilize and enrich desert soils. Cyanobacteria are key players, often providing physical cohesion, primary production, and life-supporting nitrogen fixation. Here the overall structure of crusts, the important microbial partners, and the microbial diversity that is present are discussed. Some of the special features of these communities and the individual organisms are their tolerances to desiccation and to high levels of UV radiation. Mechanisms to survive long periods of severe dehydration include the synthesis of large amounts of trehalose and the excretion of copious quantities of unique exopolysaccharides. Adaptations that allow survival in spite of high levels of UV radiation include mobility and the synthesis of natural sunscreens, scytonemin, and mycosporines. Much remains to be learned about these ubiquitous microbial consortia, whose functionalities and interrelationships are beginning to be probed at the molecular level. This chapter reviews the general microbial aspects of desert crusts and gives a special emphasis to the involvement of cyanobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. Fems Microbiol Ecol 72(3):418–428

    Article  CAS  PubMed  Google Scholar 

  • Angel R, Conrad R (2013) Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol 15(10):2799–2815

    CAS  PubMed  Google Scholar 

  • Angel R, Soares MI, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B, McKay CP, Vicuña R (2011) Hypolithic cyanobacteria supported mainly by Fog in the coastal range of the Atacama desert. Microb Ecol 61(3):568–581

    Article  PubMed  Google Scholar 

  • Azua-Bustos A, Zúñiga J, Arenas-Fajardo C, Orellana M, Salas L, Rafael V (2014) Gloeocapsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert. Extremophiles 18(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baran R, Ivanova NN, Jose N, Garcia-Pichel F, Kyrpides NC, Gugger M, Northen TR (2013) Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs 11:3617–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR (2015) Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun 6

    Google Scholar 

  • Bar-Eyal L, Eisenberg I, Faust A, Raanan H, Nevo R, Rappaport F, Krieger-Liszkay A, Setif P, Thurotte A, Reich Z, Kaplan A, Ohad I, Paltiel Y, Keren N (2015) An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. Biochimica Et Biophysica Acta-Bioenergetics 1847(10):1267–1273

    Article  CAS  Google Scholar 

  • Bates ST, Nash TH III, Garcia-Pichel F (2012) Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia 104(2):353–361

    Article  CAS  PubMed  Google Scholar 

  • Bebout BM, Garcia-Pichel F (1995) UV-B induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1(4):181–189

    Article  Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53(1):40–47

    Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey JM (eds) Environmental stressors and gene responses. Elsevier Science BV, Amsterdam, pp 181–192

    Chapter  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66(4):1489–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 added soil carbon. Soil Biol Biochem 35:643–649

    Article  CAS  Google Scholar 

  • Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. Fems Microbiol Ecol 90:335–350

    CAS  PubMed  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial microcoleus (cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region 1. J Phycol 38(6):1222–1235

    Article  CAS  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57(2):229–247

    Article  PubMed  Google Scholar 

  • Campbell D, Eriksson MJ, Oquist G, Gustafsson P, Clarke AK (1998) The cyanobacterium synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci U S A 95:364–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. BioScience 58(2):114–122

    Article  Google Scholar 

  • Caruso T, Chan Y, Lacap DC, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact to determine global biogeography of arid soil bacteria. ISME J 5:1406–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Micro 8(2):129–138

    Article  CAS  Google Scholar 

  • Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, McKay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282

    Article  PubMed  Google Scholar 

  • Chan Y, van Nostrand JD, Zhou J, Pointig SB, Farrell RL (2013) Functional ecology of an Antarctic Dry Valley. Proc Natl Acad Sci U S A 110:8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Deng S, De Philippis R, Tian W, Wu H, Wang J (2013) UV-B resistance as a criterion for the selection of desert microalgae to be utilized for inoculating desert soils. J Appl Phycol 25(4):1009–1015

    Article  CAS  Google Scholar 

  • Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R (2014) Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. Soil Biol Biochem 78:1–9

    Article  CAS  Google Scholar 

  • Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K (2011) Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J 5(10):1671–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70

    Article  CAS  Google Scholar 

  • Colica G, Li H, Rossi F, De Philippis R, Liu Y (2015) Differentiation of the characteristics of excreted extracellular polysaccharides reveals the heterogeneous primary succession of induced biological soil crusts. J Appl Phycol 27(5):1935–1944

    Article  CAS  Google Scholar 

  • da Rocha UN, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, Viet T, Buenrostro M, Bowen BP, Garcia-Pichel F, Mukhopadhyay A, Northen TR, Brodie EL (2015) Isolation of a significant fraction of non-phototroph diversity from a desert biological Soil crust. Front Microbiol 6

    Google Scholar 

  • Dadheech PK, Abed RMM, Mahmoud H, Mohan MK, Krienitz L (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologi 51(3):260–270

    Article  Google Scholar 

  • de Oliveira Mendes G, Moreira de Freitas AL, Liparini Pereira O, Ribeiro da Silva I, Bojkov Vassilev N, Dutra Costa M (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64(1):239–249

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13(4):293–299

    Article  Google Scholar 

  • Dembitsky VM, Dor I, Shkrob I, Aki M (2001) Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev desert. Russ J Bioorg Chem 27:110–119

    Article  CAS  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedros-Alio C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  • Dvořák P, Hašler P, Poulíčková A (2012) Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from three continents – a spatial and temporal characterization. PLoS One 7(6):e40153. doi:10.1371/journal.pone.0040153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34(4):329–338

    Article  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Budel B, Andreae MO, Poschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5(7):459–462

    Article  CAS  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094. doi:10.5194/acp-13-10081-2013

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012a) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109(52):21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012b) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Micro 9(11):791–802

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27(3):395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Microbiology: Cyanobacteria track water in desert soils. Nature 413(6854):380–381

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67(4):1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340(6140):1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30(10):1240–1255

    Article  CAS  PubMed  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52(2):345–357

    Article  PubMed  Google Scholar 

  • Hagemann M, Henneberg M, Felde VJMNL, Drahorad SL, Berkowicz SM, Felix-Henningsen P, Kaplan A (2015) Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microb Ecol 70(1):219–230

    Article  PubMed  Google Scholar 

  • Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 136(2):3070–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm RF, Huang Z, Edwards D, Leeson H, Peery W, Potts M (2000) Structural characterization of the released polysaccharide of desiccation-tolerant nostoc commune DRH-1. J Bacteriol 182(4):974–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66(4):620–634

    Article  Google Scholar 

  • Hu CX, Liu YD, Song LR, Zhang DK (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14(4):281–292

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54:33–42

    Article  CAS  Google Scholar 

  • Janatkova K, Rehakova K, Dolezal J, Simek M, Chlumska Z, Dvorsky M, Kopecky M (2013) Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ Microbiol 15(9):2505–2516

    Article  CAS  PubMed  Google Scholar 

  • Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29(2):140–147

    Article  Google Scholar 

  • Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation in biological soil crust communities. Environ Microbiol 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kuhne S, Strieth D, Lakatos M, Muffler K, Ulber R (2014) A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria. J Biotechnol 192:28–33

    Article  CAS  PubMed  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2015) Analysis of environmental factors determining development and succession in biological soil crusts. Sci Total Environ 538:492–499

    Article  CAS  PubMed  Google Scholar 

  • Lewis LA, Flechtner VA (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451

    Article  Google Scholar 

  • Lewis LA, Lewis PO (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol 54(6):936–947

    Article  PubMed  Google Scholar 

  • Li K, Liu R, Zhang H, Yun J (2013) The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, Northwest China. Microb Ecol 66(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Li H, Rao B, Wang G, Shen S, Li D, Hu C, Liu Y (2014) Spatial heterogeneity of cyanobacteria-inoculated sand dunes significantly influences artificial biological soil crusts in the Hopq Desert (China). Environ Earth Sci 71(1):245–253

    Article  CAS  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Velazquez D, Gunnigle E, Van Goethem MW, Quesada A, Cowan DA (2015a) Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24:819–840

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA (2015b) Microbial ecology of hot desert edaphic systems. Fems Microbiol Rev 39(2):203–221

    Article  PubMed  Google Scholar 

  • Moreira C, Vasconcelos V, Antunes A (2013) Phylogeny and biogeography of cyanobacteria and their produced toxins. Mar Drugs 11:4350–4369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). Fems Microbiol Ecol 54(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 39(3):314–325

    Article  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil acinetobacter strains. Biol Fertil Soils 46(7):707–715

    Article  CAS  Google Scholar 

  • Ohad I, Raanan H, Keren N, Tchernov D, Kaplan A (2010) Light-induced changes within photosystem II protects microcoleus sp. in biological desert sand crusts against excess light. PLoS ONE 5(6):e11000. doi:10.1371/journal.pone.0011000

  • Ohad I, Berg A, Berkowicz SM, Kaplan A, Keren N (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Santos K, Pietrasiak N, Bohunick M, Miscoe LH, Kováčik L, Martin MP, Johansen JR (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol 49(4):450–470

    Article  Google Scholar 

  • Patzelt DJ, Hodač L, Friedl T, Pietrasiak N, Johansen JR (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. J Phycol 50(4):698–710

    Article  CAS  PubMed  Google Scholar 

  • Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, Buckley DH (2016) Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J 10(2):287–298

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern venezuelan region. Soil Biol Biochem 39(11):2905–2914

    Article  CAS  Google Scholar 

  • Perkerson RB III, Johansen JR, Kovácik L, Brand J, Kaštovský J, Casamatta DA (2011) A unique pseudoanabaenalean (Cyanobacteria) genus nodosilinea gen.nov. based on morphological and molecular data. J Phycol 47(6):1397–1412

    Article  CAS  Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa FO, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat Geosci 7:283–286

    Article  CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10(8):551–562

    Article  CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potts M (1997) Etymological basis for the genus name Nostoc (cyanobacteria). Int J Syst Bact 47:584

    Article  Google Scholar 

  • Potts M (2001) Desiccation tolerance: A simple process? Trends Microbiol, 9553–559

    Google Scholar 

  • Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol 47(4):366–373

    Article  CAS  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49(9):825–829

    Article  CAS  PubMed  Google Scholar 

  • Raanan H, Felde VJMNL, Peth S, Drahorad S, Ionescu D, Eshkol G, Treves H, Felix-Henningsen P, Berkowicz SM, Keren N, Horn R, Hagemann M, Kaplan A (2016a) Three-dimensional structure and cyanobacterial activity within a desert biological soil crust. Environ Microbiol 18:372–383

    Article  CAS  PubMed  Google Scholar 

  • Raanan H, Oren N, Treves H, Berkowicz SM, Hagemann M, Pade N, Keren N, Kaplan A (2016b) Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. Environ Microbiol 18:414–426

    Article  CAS  PubMed  Google Scholar 

  • Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7(11):2178–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfield E, Barns SM, Belnap J, Daane LL, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. Nov. Phycologia 46(5):481–502

    Article  Google Scholar 

  • Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldán M, Gómez-Silva B, DiRuggiero J (2015) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ Microbiol 17:299–315

    Article  PubMed  Google Scholar 

  • Rosentreter R, Bowker M, Belnap, J (2007) A field guide to biological soil crusts of western U.S. drylands. U.S. Government Printing Office, Denver, Colorado

    Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5(2):1218–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi F, Potrafka RM, Garcia-Pichel F, De Philippis R (2012) The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem 46:33–40

    Google Scholar 

  • Scherer S, Ernst A, Chen T-W, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62(3):418–423

    Article  PubMed  Google Scholar 

  • Schmidt SK, Nemergut DR, Todd BT, Lynch RC, Darcy JL, Cleveland CC, King AJ (2012) A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecol Divers 5(4):513–519

    Article  Google Scholar 

  • Singh H, Anurag K, Apte SK (2013) High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanated for the genome/proteome repair capabilities. Photosynth Res 118:71–81

    Article  CAS  Google Scholar 

  • Sorrels CM, Proteau PJ, Gerwick WH (2009) Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl Environ Microbiol 75:4861–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soule T, Gao Q, Stout V, Garcia-Pichel F (2013) The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study. Photochem Photobiol 89(2):415–423

    Article  CAS  PubMed  Google Scholar 

  • Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) Genome of the cyanobacterium microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol 193(17):4569–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Steven B, Gallegos-Graves LV, Starkenburg SR, Chain PS, Kuske CR (2012a) Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. Environ Microbiol Rep 4(2):248–256

    Article  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Kuske CR (2012b) Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 14(12):3247–3258

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Kuske CR, Gallegos-Graves LV, Reed SC, Belnap J (2015) Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl Environ Microbiol 81(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340

    Google Scholar 

  • Strauss SL, Day TA, Garcia-Pichel F (2012) Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108(1-3):171–182

    Article  Google Scholar 

  • Sukenik A, Quesada A, Salmaso N (2015) Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers Conserv 24:889–908

    Article  Google Scholar 

  • Tao G-C, Tian S-J, Cai M-Y, Xie G-H (2008) Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18(4):515–523

    Article  CAS  Google Scholar 

  • Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607

    Article  PubMed  Google Scholar 

  • Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A (2013) A newly isolated Chlorella sp from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 86(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • United Nations. http://www.un.org/en/events/desertification_decade/background.shtml. Accessed 28 June 2016

  • Wang W, Liu Y, Li D, Hu C, Rao B (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41(5):926–929

    Article  CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52(3):389–398

    Article  PubMed  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, DiRuggiero J, Vitek P, Artieda O, Souza-Egipsy V, Skaloud P, Tisza M, Davila AF, Vilchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6

    Google Scholar 

  • Wu L, Zhang G, Lan S, Zhang D, Hu C (2013a) Microstructures and photosynthetic diurnal changes in the different types of lichen soil crusts. Eur J Soil Biol 59:48–53

    Article  Google Scholar 

  • Wu L, Lan S, Zhang D, Hu C (2013b) Functional reactivation of photosystem II in lichen soil crusts after long-term desiccation. Plant and Soil 369(1-2):177–186

    Article  CAS  Google Scholar 

  • Xu Y, Rossi F, Colica G, Deng S, De Philippis R, Chen L (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49(2):143–152

    Article  CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, Belnap J, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N-2-fixing members of biological soil crusts of the Colorado Plateau, USA. Fems Microbiol Ecol 60(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J (2012) Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol 3

    Google Scholar 

  • Zhang B, Zhang Y, Downing A, Niu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Manag 25(3):275–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under a CRADA cooperative agreement (FA7000-16-2-0006) between USAF Academy and Hallenbeck Associates (P.C. Hallenbeck). The views expressed here are those of the authors and do not reflect the official policy or position of the US Air Force, the Department of Defense, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Hallenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hallenbeck, P.C. (2017). Desert Crusts. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_7

Download citation

Publish with us

Policies and ethics