Skip to main content

Engineering Photosynthetic α-Proteobacteria for the Production of Recombinant Proteins and Terpenoids

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Phototrophic non-sulfur purple α-proteobacteria are able to harvest sunlight and to fix atmospheric carbon dioxide and dinitrogen. Consequently, these microbes are used as model organisms for the investigation of regulation and activity of the photosynthesis complexes, the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) as well as the nitrogenase and hydrogenase enzyme complexes. In addition, this group of prokaryotic phototrophs has emerged as microbial production chassis for the synthesis of recombinant proteins and natural products. To this end, a versatile set of different expression tools has been developed allowing the functional expression of single genes as well as the transfer of complete metabolic pathways. This review provides an overview of different strategies to engineer photosynthetic α-proteobacteria, especially the two most commonly employed representatives Rhodobacter capsulatus and Rhodobacter sphaeroides, for the production of difficult-to-express proteins and terpenoids. Unique physiological properties of these alternative production hosts are discussed in the context of respective production processes. Furthermore, synthetic biology tools applicable for heterologous gene expression and establishment of combinatorial biosynthetic pathways in phototrophic α-proteobacteria are described. Finally, the potential of phototrophic bacteria in future bioeconomic production routes is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Stephen White, Department of Physiology and Biophysics, School of Medicine, University of California at Irvine: http://blanco.biomol.uci.edu/mpstruc/, October 10th, 2016.

  2. 2.

    According to Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) statistics: http://www.rcsb.org/pdb/statistics/holdings.do, October 10th, 2016.

References

  • Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta 1817:1616–1627

    Article  CAS  PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci U S A 84:6162–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS Lett 482:215–219

    Article  CAS  PubMed  Google Scholar 

  • Arendt P, Pollier J, Callewaert N, Goossens A (2016) Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms., Plant J 87:16–37

    Google Scholar 

  • Arvani S, Markert A, Loeschcke A, Jaeger K-E, Drepper T (2012) A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. J Biotechnol 159:162–171

    Article  CAS  PubMed  Google Scholar 

  • Autenrieth C, Ghosh R (2015) Random mutagenesis and overexpression of rhodopin-3,4-desaturase allows the production of highly conjugated carotenoids in Rhodospirillum rubrum. Arch Biochem Biophys 572:134–141

    Article  CAS  PubMed  Google Scholar 

  • Barbieri MR, Kerber NL, Pucheu NL, Tadros MH, García AF (2002) Effect of light and oxygen and adaptation to changing light conditions in a photosynthetic mutant in which the LHII complex of Rhv. sulfidophilum was heterologously expressed in a strain of Rb. capsulatus whose puc operon was deleted. Curr Microbiol 45:209–216

    Article  CAS  Google Scholar 

  • Beekwilder J, van Houwelingen A, Cankar K, van Dijk AD, de Jong RM, Stoopen G, Bouwmeester H, Achkar J, Sonke T, Bosch D (2014) Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol J 12:174–182

    Article  CAS  PubMed  Google Scholar 

  • Bélanger G, Gingras G (1988) Structure and expression of the puf operon messenger RNA in Rhodospirillum rubrum. J Biol Chem 263:7639–7645

    PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6, e29191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry EA, Huang L-S, Saechao LK, Pon NG, Valkova-Valchanova M, Daldal F (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc 1 : comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81:251–275

    Article  CAS  PubMed  Google Scholar 

  • Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  • Butzin NC, Owen HA, Collins MLP (2010) A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif 70:88–94

    Article  CAS  PubMed  Google Scholar 

  • Chang C-H, el-Kabbani O, Tiede D, Norris J, Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360

    Google Scholar 

  • Cheng D, Wang R, Prather KJ, Chow KL, Hsing I-M (2015a) Tackling codon usage bias for heterologous expression in Rhodobacter sphaeroides by supplementation of rare tRNAs. Enzyme Microb Technol 72:25–34

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Chen G, Ding G, Zhao Z, Dong T, Hu Z (2015b) Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system. Genet Mol Res 14:4058–4067

    Article  CAS  PubMed  Google Scholar 

  • Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochim Biophys Acta 1847:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G, Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33:4584–4593

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 159:540–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels GA, Drews G, Saier MH Jr (1988) Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon. J Bacteriol 170:1698–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284

    Article  CAS  PubMed  Google Scholar 

  • de Smet L, Kostanjevecki V, Guisez Y, van Beeumen J (2001) A novel system for heterologous expression of flavocytochrome c in phototrophic bacteria using the Allochromatium vinosum rbcA promoter. Arch Microbiol 176:19–28

    Article  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X-W, Finlay DR, Guiney D, Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153

    Article  CAS  PubMed  Google Scholar 

  • Drepper T, Arvani S, Rosenau F, Wilhelm S, Jaeger K-E (2005) High-level transcription of large gene regions: a novel T7 RNA-polymerase-based system for expression of functional hydrogenases in the phototrophic bacterium Rhodobacter capsulatus. Biochem Soc Trans 33:56–58

    Article  CAS  PubMed  Google Scholar 

  • Duport C, Meyer C, Naud I, Jouanneau Y (1994) A new gene expression system based on a fructose-dependent promoter from Rhodobacter capsulatus. Gene 145:103–108

    Article  CAS  PubMed  Google Scholar 

  • Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 5:21

    Google Scholar 

  • Elofsson A, von Heijne G (2007) Membrane protein structure: prediction versus reality. Annu Rev Biochem 76:125–140

    Article  CAS  PubMed  Google Scholar 

  • Elsen S, Colbeau A, Chabert J, Vignais PM (1996) The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 178:5174–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsen S, Jaubert M, Pignol D, Giraud E (2005) PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57:17–26

    Article  CAS  PubMed  Google Scholar 

  • Erbakan M, Shen Y-X, Grzelakowski M, Butler PJ, Kumar M, Curtis WR (2014) Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS One 9, e86830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erbakan M, Curtis BS, Nixon BT, Kumar M, Curtis WR (2015) Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins. Protein Expr Purif 115:109–117

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2:925–936

    Article  CAS  PubMed  Google Scholar 

  • Essen L-O (2002) Structural genomics of “non-standard” proteins: a chance for membrane proteins? Gene Funct Dis 3:39–48

    Article  CAS  Google Scholar 

  • Esser L, Gong X, Yang S, Yu L, Yu C-A, Xia D (2006) Surface-modulated motion switch: capture and release of iron–sulfur protein in the cytochrome bc 1 complex. Proc Natl Acad Sci U S A 103:13045–13050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema TJG, Andersson SGE (2009) The α-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedotova Y, Zeilstra-Ryalls J (2014) Analysis of the role of PrrA, PpsR, and FnrL in intracytoplasmic membrane differentiation of Rhodobacter sphaeroides 2.4.1 using transmission electron microscopy. Photosynth Res 119:283–290

    Article  CAS  PubMed  Google Scholar 

  • Fodor BD, Kovács ÁT, Csáki R, Hunyadi-Gulyás É, Klement É, Maróti G, Mészáros LS, Medzihradszky KF, Rákhely G, Kovács KL (2004) Modular broad-host-range expression vectors for single-protein and protein complex purification. Appl Environ Microbiol 70:712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler GJ, Gardiner AT, Mackenzie RC, Barratt SJ, Simmons AE, Westerhuis WH, Cogdell RJ, Hunter CN (1995) Heterologous expression of genes encoding bacterial light-harvesting complexes in Rhodobacter sphaeroides. J Biol Chem 270:23875–23882

    Article  CAS  PubMed  Google Scholar 

  • Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far… Photosynth Res 70:249–256

    Google Scholar 

  • Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU (2016) Biotechnology of anoxygenic phototrophic bacteria. Adv Biochem Eng Biotechnol

    Google Scholar 

  • Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilumRhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol 73:332–338

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Asua G, Cogdell RJ, Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44:233–244

    Article  CAS  PubMed  Google Scholar 

  • Glaeser J, Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 151:1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Graichen ME, Jones LH, Sharma BV, van Spanning RJ, Hosler JP, Davidson VL (1999) Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides. J Bacteriol 181:4216–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor J, Klug G (1999) Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiol Lett 179:1–9

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Perner M (2016) Sulfide consumption in Sulfurimonas denitrificans and heterologous expression of its three sulfide-quinone reductase homologs. J Bacteriol 198:1260–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattab G, Suisse AYT, Ilioaia O, Casiraghi M, Dezi M, Warnet XL, E. WD, Moncoq, K., Zoonens M, Miroux B (2010) Membrane protein production in Escherichia coli: overview and protocols. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer Science + Business Media, New York, pp 87–106

    Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  PubMed  Google Scholar 

  • Holden-Dye K, Crouch LI, Jones MR (2008) Structure, function and interactions of the PufX protein. Biochim Biophys Acta 1777:613–630

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhao Z, Pan Y, Tu Y, Chen G (2010) A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry (Mosc) 75:519–525

    Article  CAS  Google Scholar 

  • Hümbelin M, Thomas A, Lin J, Li J, Jore J, Berry A (2002) Genetics of isoprenoid biosynthesis in Paracoccus zeaxanthinifaciens. Gene 297:129–139

    Article  PubMed  Google Scholar 

  • Hunter CN, Hundle BS, Hearst JE, Lang HP, Gardiner AT, Takaichi S, Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176:3692–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75:6613–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inui M, Nakata K, Roh JH, Vertes AA, Yukawa H (2003) Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl Environ Microbiol 69:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaschke PR, Saer RG, Noll S, Beatty JT (2011) Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 497:519–538

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Moon H-J, Lee J-L, Kim I-W, Lee J-K (2010) Current state of coenzyme Q10 production and its applications. Appl Microbiol Biotechnol 85:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Nikolau BJ (2014) Evaluating PHA productivity of bioengineered Rhodosprillum rubrum. PLoS One 9, e96621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones MR, Visschers RW, van Grondelle R, Hunter CN (1992) Construction and characterization of a mutant of Rhodobacter sphaeroides with the reaction center as the sole pigment-protein complex. Biochemistry 31:4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Kappler U, McEwan AG (2002) A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella. FEBS Letters 529:208–214

    Article  CAS  PubMed  Google Scholar 

  • Katona G, Andreasson U, Landau EM, Andreasson LE, Neutze R (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å resolution. J Mol Biol 331:681–692

    Article  CAS  PubMed  Google Scholar 

  • Katsiou E, Sturgis JN, Robert B, Tadros MH (1998) Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum sulfidophilum. Microbiol Res 153:189–204

    Article  CAS  PubMed  Google Scholar 

  • Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V, Jaeger K-E, Heck A, Drepper T (2010) A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expr Purif 69:137–146

    Article  CAS  PubMed  Google Scholar 

  • Katzke N, Bergmann R, Jaeger K-E, Drepper T (2012) Heterologous high-level gene expression in the photosynthetic bacterium Rhodobacter capsulatus. Methods Mol Biol 824:251–269

    Article  CAS  PubMed  Google Scholar 

  • Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger K-E (2016) Novel tools for the functional expression of metagenomic DNA. Meth Mol Biol

    Google Scholar 

  • Kawata T, Bristol JR, Rossignol DP, Rose JR, Kobayashi S, Yokohama H, Ishibashi A, Christ WJ, Katayama K, Yamatsu I, Kishi Y (1999) E5531, a synthetic non-toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide. Br J Pharmacol 127:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197

    Article  CAS  PubMed  Google Scholar 

  • Kersters K, de Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the proteobacteria. Prokaryotes 5:3–37

    Article  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    Article  CAS  PubMed  Google Scholar 

  • Khan NE, Myers JA, Tuerk AL, Curtis WR (2014) A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour Technol 172:201–211

    Article  CAS  PubMed  Google Scholar 

  • Khan NE, Nybo SE, Chappell J, Curtis WR (2015) Triterpene hydrocarbon production engineered into a metabolically versatile host—Rhodobacter capsulatus. Biotechnol Bioeng 112:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Kiley PJ, Varga A, Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Yoshimune K, Komoriya T, Kohno H (2011) Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides. J Biosci Bioeng 112:602–605

    Article  CAS  PubMed  Google Scholar 

  • Koepke J, Krammer E-M, Klingen AR, Sebban P, Ullmann GM, Fritzsch G (2007) pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 371:396–409

    Article  CAS  PubMed  Google Scholar 

  • Kong LY, Tan RX (2015) Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep 32:1617–1621

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Phillips RW, Elzer PH, Roop RM II, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802

    CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Labes M, Pühler A, Simon R (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46

    Article  CAS  PubMed  Google Scholar 

  • Laible PD, Scott HN, Henry L, Hanson DK (2004) Towards higher-throughput membrane protein production for structural genomics initiatives. J Struct Funct Genomics 5:167–172

    Article  CAS  PubMed  Google Scholar 

  • Laible PD, Mielke DL, Hanson DK (2009) Foreign gene expression in photosynthetic bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B.V., Dordrecht, pp 839–860

    Chapter  Google Scholar 

  • Laible PD, Mielke DL, Hanson DK (2011) Membrane protein production using photosynthetic bacteria: a practical guide. In: Robinson AS (ed) Production of Membrane Proteins: Strategies for Expression and Isolation, 1st edn. Wiley-VCH Verlags GmbH & Co, KGaA, pp 167–198

    Chapter  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, DeHoff BS, Donohue TJ, Gumport RI, Kaplan S (1989) Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. J Biol Chem 264:19354–19365

    CAS  PubMed  Google Scholar 

  • Leimkühler S, Kern M, Solomon PS, McEwan AG, Schwarz G, Mendel RR, Klipp W (1998) Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol Microbiol 27:853–869

    Article  PubMed  Google Scholar 

  • Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruzska J, Ehrenreich A, Streit WR, Jaeger K-E (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109

    Article  CAS  PubMed  Google Scholar 

  • Lindenstrauß U, Brüser T (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:7807–7814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger K-E, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Shi Y, He S, Fei Y, Yu K, Yu H (2013) Enhanced production of CoQ10 by constitutive overexpression of 3-demethyl ubiquinone-9 3-methyltransferase under tac promoter in Rhodobacter sphaeroides. Biochem Eng J 72:42–47

    Article  CAS  Google Scholar 

  • Lu W, Ye L, Xu H, Xie W, Gu J, Yu H (2014) Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides. Biotechnol Bioeng 111:761–769

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Ye L, Lv X, Xie W, Gu J, Chen Z, Zhu Y, Li A, Yu H (2015) Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab Eng 29:208–216

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom K (2007) Structural genomics and drug discovery. J Cell Mol Med 11:224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Springer Netherlands, Dordrecht, pp 915–928

    Google Scholar 

  • Madigan MT, Jung D (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B.V., pp 1–15

    Google Scholar 

  • Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Kawase M, Miyasaka H, Yagi K (2006) Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl Microbiol Biotechnol 70:397–402

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  PubMed  Google Scholar 

  • Masepohl B, Hallenbeck PC (2010) Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. Adv Exp Med Biol 675:49–70

    Article  CAS  PubMed  Google Scholar 

  • Masepohl B, Drepper T, Paschen A, Gross S, Pawlowski A, Raabe K, Riedel K-U, Klipp W (2002) Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J Mol Microbiol Biotechnol 4:243–248

    CAS  PubMed  Google Scholar 

  • McLuskey K, Roszak AW, Zhu Y, Isaacs NW (2010) Crystal structures of all-alpha type membrane proteins. Eur Biophys J 39:723–755

    Article  CAS  PubMed  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  • Mukoyama D, Takeyama H, Kondo Y, Matsunaga T (2006) Astaxanthin formation in the marine photosynthetic bacterium Rhodovulum sulfidophilum expressing crtI, crtY, crtW and crtZ. FEMS Microbiol Lett 265:69–75

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Klösgen RB (2005) The Tat pathway in bacteria and chloroplasts. Mol Membr Biol 22:113–121

    Article  PubMed  CAS  Google Scholar 

  • Mus-Veteau I, Demange P, Zito F (2014) Membrane protein production for structural analysis. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer Science + Business Media, New York, pp 1–44

    Google Scholar 

  • Naziri E, Tsimidou MZ (2013) Formulated squalene for food related applications. Recent Pat Food Nutr Agric 5:83–104

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Zhang L, Hu Z, Liu Y, Zhao Z (2015) Human neutrophil peptide 3 could be functionally expressed in Rhodobacter sphaeroides. Acta Biochim Pol 62:259–263

    Article  CAS  PubMed  Google Scholar 

  • Niederman RA (2016) Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. Biochim Biophys Acta 1857:232–246

    Article  CAS  PubMed  Google Scholar 

  • Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci U S A 108:12260–12265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybo SE, Khan NE, Woolston BM, Curtis WR (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120

    Article  CAS  PubMed  Google Scholar 

  • Olsen JD, Adams PG, Jackson PJ, Dickman MJ, Qian P, Hunter CN (2014) Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy. J Biol Chem 289:29927–29936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366:301–316

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A 103:16117–16122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romagnoli S, Tabita FR (2009) Carbon dioxide metabolism and its regulation in nonsulfur purple photosynthetic bacteria. In: Daldal F, Thurnauer MC, Beatty JT (eds) Hunter CN. The Purple Phototrophic Bacteria, Springer Science + Business Media B.V., pp 563–576

    Google Scholar 

  • Roy A, Shukla AK, Haase W, Michel H (2008) Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors. Biol Chem 389:69–78

    Article  CAS  PubMed  Google Scholar 

  • Saer RG, Pan J, Hardjasa A, Lin S, Rosell F, Mauk AG, Woodbury NW, Murphy ME, Beatty JT (2014) Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. Biochim Biophys Acta 1837:366–374

    Article  CAS  PubMed  Google Scholar 

  • Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (2015) Carotenoids of biotechnological importance. Adv Biochem Eng Biotechnol 148:449–467

    CAS  PubMed  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology, vol 148. Springer International Publishing

    Google Scholar 

  • Shaw AL, Hanson GR, McEwan AG (1996) Cloning and sequence analysis of the dimethylsulfoxide reductase structural gene from Rhodobacter capsulatus. Biochim Biophys Acta 1276:176–180

    Article  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  • Solomon PS, Lane I, Hanson GR, McEwan AG (1997) Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Eur J Biochem 246:200–203

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276:812–816

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter W, Weckesser J, Salimath PV, Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  PubMed  Google Scholar 

  • Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN (2014) Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. Photosynth Res 119:243–256

    Article  CAS  PubMed  Google Scholar 

  • Tagliabue A, Rappuoli R (2008) Vaccine adjuvants: the dream becomes real. Hum Vaccin 4:347–349

    Article  CAS  PubMed  Google Scholar 

  • Tehrani A, Beatty JT (2004) Effects of precise deletions in Rhodobacter sphaeroides reaction center genes on steady-state levels of reaction center proteins: a revised model for reaction center assembly. Photosynth Res 79:101–108

    Article  CAS  PubMed  Google Scholar 

  • Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106

    CAS  PubMed  Google Scholar 

  • Tikh IB, Held M, Schmidt-Dannert C (2014) BioBrickTM compatible vector system for protein expression in Rhodobacter sphaeroides. Appl Microbiol Biotechnol 98:3111–3119

    Article  CAS  PubMed  Google Scholar 

  • Trchounian A (2015) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35:103–113

    Article  CAS  PubMed  Google Scholar 

  • van der Palen CJNM, Reijnders WNM, de Vries S, Duine JA, van Spanning RJM (1997) MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans. Antonie Van Leeuwenhoek 72:219–228

    Article  PubMed  Google Scholar 

  • Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, Tikh IB, Wawrzyn GT, Schmidt-Dannert C (2011) Optimized compatible set of BioBrickTM vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM (2009) Regulation of hydrogenase gene expression. In: Daldal F, Thurnauer MC, Beatty JT (eds) Hunter CN. The Purple Phototrophic Bacteria, Springer Science + Business Media B.V., pp 743–757

    Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, Tomiyama M, Colbeau A (2000) Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus. J Bacteriol 182:5997–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333

    Article  PubMed  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Hu Z, Chen X, Zhao Z, Li J, Chen G (2009) Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Mol Biol Rep 36:1695–1702

    Article  CAS  PubMed  Google Scholar 

  • Wang GS, Grammel H, Abou-Aisha K, Sägesser R, Ghosh R (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 78:7205–7215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-C, Liu W-S, Chang F-H, Tsai P-Y, Tsai M-K, Shiang J-C, Wen Z-H (2014) Rhodobacter sphaeroides extract improves glucose homeostasis in streptozotocin-induced diabetic mice. J Microb Biochem Technol 6:38–42

    Article  CAS  Google Scholar 

  • Wang C-C, Ding S, Chiu K-H, Liu W-S, Lin T-J, Wen Z-H (2016) Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food Nutr Res 60:29580

    Google Scholar 

  • Way JC, Collins JJ, Keasling JD, Silver PA (2014) Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157:151–161

    Article  CAS  PubMed  Google Scholar 

  • Weiss MS, Schulz GE (1992) Structure of porin refined at 1.8 Å resolution. J Mol Biol 227:493–509

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SC, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606

    Article  CAS  PubMed  Google Scholar 

  • Woronowicz K, Harrold JW, Kay JM, Niederman RA (2013) Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides. J Mol Microbiol Biotechnol 23:48–62

    Article  CAS  PubMed  Google Scholar 

  • Wu W-T, Liu W-S (2011) Anti-inflammatory property of biomaterial carotenoids production by Rhodobacter sphaeroides WL-APD911. Adv Mat Res 287–290:2028–2031

    Article  CAS  Google Scholar 

  • Yang X, Dai G, Li G, Yang ES (2010) Coenzyme Q10 reduces β-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 41:110–113

    Article  CAS  PubMed  Google Scholar 

  • Yang T-H, Lai Y-H, Lin T-P, Liu W-S, Kuan L-C, Liu C-C (2014) Chronic exposure to Rhodobacter sphaeroides extract LycogenTM prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts. Int J Mol Sci 15:1686–1699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H (2008) Exogenous agents that target transmembrane domains of proteins. Angew Chem Int Ed 47:2744–2752

    Article  CAS  Google Scholar 

  • Yoshida K, Yoshioka D, Inoue K, Takaichi S, Maeda I (2007) Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors. Appl Microbiol Biotechnol 76:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol 74:6730–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37:949–957

    Article  CAS  PubMed  Google Scholar 

  • Zappa S, Li K, Bauer CE (2010) The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. Adv Exp Med Biol 675:229–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Hu Z, Nie X, Cheng L, Ding G, Luo M, Pan Y, Liang Y, Chen G (2011) A novel Rhodobacter sphaeroides expression system for real-time evaluation of heterologous protein expression levels. Protein Pept Lett 18:568–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories is supported by the Ministry of Innovation, Science and Research of the German State of North Rhine-Westphalia MIWF (Research and Technology Platform ExpressO, NRW Strategieprojekt BioSC), the German Federal Ministry of Education and Research BMBF (ExpresSys, HT-ENZ), and the German Research Foundation DFG (Cluster of Excellence on Plant Sciences CEPLAS). Further, the authors would like to thank Anita Loeschcke, Stephan Thies, and Karl-Erich Jaeger for the critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Drepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heck, A., Drepper, T. (2017). Engineering Photosynthetic α-Proteobacteria for the Production of Recombinant Proteins and Terpenoids. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_12

Download citation

Publish with us

Policies and ethics