Probabilistic Modelling for Delay Estimation in Gravitationally Lensed Photon Streams
Abstract
We test whether a more principled treatment of delay estimation in lensed photon streams, compared with the standard kernel estimation method, can have benefits of more accurate (less biased) and/or more stable (less variance) estimation. To that end, we propose a delay estimation method in which a single latent inhomogeneous Poisson process underlying the lensed photon streams is imposed. The rate function model is formulated as a linear combination of nonlinear basis functions. Such unifying rate function is then used in delay estimation based on the corresponding Innovation Process. This method is compared with a more straightforward and less principled baseline method based on kernel estimation of the rate function. Somewhat surprisingly, the overall emerging picture is that the theoretically more principled method does not bring much practical benefit in terms of the bias/variance of the delay estimation. This is in contrast to our previous findings on daily flux data.
Keywords
Gravitational lensing Non-homogeneous Poisson process Kernel estimation methodsReferences
- 1.Al Otaibi, S., Tiňo, P., Cuevas-Tello, J.C., Mandel, I., Raychaudhury, S.: Kernel regression estimates of time delays between gravitationally lensed fluxes. MNRAS 459(1), 573–584 (2016)CrossRefGoogle Scholar
- 2.Bratley, P., Fox, B., Schrage, L.E.: A Guide to Simulation, 2nd edn. Springer, New York (1987)CrossRefMATHGoogle Scholar
- 3.Courbin, F., Chantry, V., Revaz, Y., Sluse, D., Faure, C., Tewes, M., Eulaers, E., Koleva, M., Asfandiyarov, I., Dye, S., Magain, P., van Winckel, H., Coles, J., Saha, P., Ibrahimov, M., Meylan, G.: COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435–1223. Astron. Astrophys. 536, A53 (2011)CrossRefGoogle Scholar
- 4.Cuevas-Tello, J.C., Tiňo, P., Raychaudhury, S.: How accurate are the time delay estimates in gravitational lensing? Astron. Astrophys. 454, 695–706 (2006)CrossRefGoogle Scholar
- 5.Cuevas-Tello, J.C., Tiňo, P., Raychaudhury, S., Yao, X., Harva, M.: Uncovering delayed patterns in noisy and irregularly sampled time series: an astronomy application. Pattern Recogn. 43(3), 1165–1179 (2009)CrossRefMATHGoogle Scholar
- 6.Fassnacht, C.D., Xanthopoulos, E., Koopmans, L.V.E., Rusin, D.: A determination of H\(_{0}\) with the CLASS gravitational lens B1608+656 III. A significant improvement in the precision of the time delay measurements. Astrophys. J. 581, 823–835 (2002)CrossRefGoogle Scholar
- 7.Fathi-Vajargah, B., Khoshkar-Foshtomi, H.: Simulating nonhomogeneous poisson point process based on multi criteria intensity function and comparison with its simple form. J. Math. Comput. Sci. (JMCS) 9(3), 133–138 (2014)Google Scholar
- 8.Greene, Z.S., Suyu, S.H., Treu, T., Hilbert, S., Auger, M.W., Collett, T.E., Marshall, P.J., Fassnacht, C.D., Blandford, R.D., Bradač, M., Koopmans, L.V.E.: Improving the precision of time-delay cosmography with observations of galaxies along the line of sight. Astrophys. J. 768(1), 39 (2013)CrossRefGoogle Scholar
- 9.Hainline, L.J., Morgan, C.W., Beach, J.N., Kochanek, C.S., Harris, H.C., Tilleman, T., Fadely, R., Falco, E.E., Le, T.X.: A new microlensing event in the doubly imaged Quasar Q 0957+561. Astrophys. J. 744(2), 104 (2012)CrossRefGoogle Scholar
- 10.Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)Google Scholar
- 11.Lewis, P.A., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Nav. Res. Logistics Q. 26(3), 403–413 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 12.Nawrot, M., Aertsen, A., Rotter, S.: Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J. Neurosci. Meth. 94(1), 81–92 (1999)CrossRefGoogle Scholar
- 13.Park, B.U., Marron, J.S.: Comparison of data-driven bandwidth selectors. J. Am. Stat. Assoc. 85(409), 66–72 (1990)CrossRefGoogle Scholar
- 14.Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)MathSciNetCrossRefMATHGoogle Scholar
- 15.Rasch, G.: The poisson process as a model for a diversity of behavioral phenomena. In: International Congress of Psychology, vol. 2, p. 2 (1963)Google Scholar
- 16.Refsdal, S.: On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. MNRAS 128, 307 (1964)MathSciNetCrossRefMATHGoogle Scholar
- 17.Ross, S.M.: Introduction to Probability Models. Academic press, Boston (2014)MATHGoogle Scholar
- 18.Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 707. Wiley, New York (2011)MATHGoogle Scholar
- 19.Shimazaki, H., Shinomoto, S.: Kernel bandwidth optimization in spike rate estimation. J. Comput. Neurosci. 29(1–2), 171–182 (2010)MathSciNetCrossRefGoogle Scholar
- 20.Sigman, K.: Poisson processes and compound (batch) poisson processes. Lecture Notes. Columbia University, USA (2007). http://www.columbia.edu/ks20/4703-Sigman/4703-07-Notes-PP-NSPP.pdf
- 21.Suyu, S.H., Auger, M.W., Hilbert, S., Marshall, P.J., Tewes, M., Treu, T., Fassnacht, C.D., Koopmans, L.V.E., Sluse, D., Blandford, R.D., Courbin, F., Meylan, G.: Two accurate time-delay distances from strong lensing: implications for cosmology. Astrophys. J. 766(2), 70 (2013)CrossRefGoogle Scholar