Skip to main content

Predict Two-Dimensional Protein Folding Based on Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic Algorithm

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2016 (IDEAL 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9937))

Abstract

In order to improve the performance of prediction of protein folding problem, we introduce a relatively new chaotic clonal genetic algorithm (abbreviated as CCGA) to solve the 2D hydrophobic-polar lattice model. Our algorithm combines three successful components—(i) standard genetic algorithm (SGA), (ii) clonal selection algorithm (CSA), and (iii) chaotic operator. We compared this proposed CCGA with SGA, artificial immune system (AIS), and immune genetic algorithm (IGA) for various chain lengths. It demonstrated that CCGA had better performance than other methods over large-sized protein chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cumberworth, A., Bui, J.M., Gsponer, J.: Free energies of solvation in the context of protein folding: implications for implicit and explicit solvent models. J. Comput. Chem. 37, 629–640 (2016)

    Article  Google Scholar 

  2. Dumitriu, A., Golji, J., Labadorf, A.T., Gao, B.B., Beach, T.G., Myers, R.H., Longo, K.A., Latourelle, J.C.: Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med. Genomics 9, Article ID: 5 (2016)

    Google Scholar 

  3. An, P., Winters, D., Walker, K.W.: Automated high-throughput dense matrix protein folding screen using a liquid handling robot combined with microfluidic capillary electrophoresis. Protein Expr. Purif. 120, 138–147 (2016)

    Article  Google Scholar 

  4. Rivas-Pardo, J.A., Eckels, E.C., Popa, I., Kosuri, P., Linke, W.A., Fernandez, J.M.: Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339–1347 (2016)

    Article  Google Scholar 

  5. Santos, J., Villot, P., Dieguez, M.: Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model. J. Comput. Biol. 21, 823–845 (2014)

    Article  Google Scholar 

  6. Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, Article ID: 931256 (2015)

    Google Scholar 

  7. Agarwal, P., Bhatnagar, V., Balochian, S.: Swarm Intelligence and Its Applications 2014. Sci. World J. 2014, Article ID: 204294 (2014)

    Google Scholar 

  8. Wang, S., Yang, J., Liu, G., Du, S., Yan, J.: Multi-objective path finding in stochastic networks using a biogeography-based optimization method. Simulation 92, 637–647 (2016)

    Article  Google Scholar 

  9. Othman, M.M., El-Khattam, W., Hegazy, Y.G., Abdelaziz, A.Y.: Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Int. J. Electr. Power Energy Syst. 82, 105–113 (2016)

    Article  Google Scholar 

  10. Wu, L.: Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagn. Res. 116, 65–79 (2011)

    Article  Google Scholar 

  11. Zhang, Y.: Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Syst. Appl. 36, 8849–8854 (2009)

    Article  Google Scholar 

  12. Lin, C.J., Hsieh, M.H.: An efficient hybrid Taguchi-genetic algorithm for protein folding simulation. Expert Syst. Appl. 36, 12446–12453 (2009)

    Article  Google Scholar 

  13. Huang, C.H., Yang, X.B., He, Z.H.: Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures. Comput. Biol. Chem. 34, 137–142 (2010)

    Article  MathSciNet  Google Scholar 

  14. Narayanan, A.G.H., Krishnakumar, U., Judy, M.V.: An enhanced mapreduce framework for solving protein folding problem using a parallel genetic algorithm. In: Satapathy, S.C., Avadhani, P.S., Udgata, S.K., Lakshminarayana, S. (eds.) ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India - Vol I. AISC, vol. 248, pp. 241–250. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Garza-Fabre, M., Rodriguez-Tello, E., Toscano-Pulido, G.: Constraint-handling through multi-objective optimization: the hydrophobic-polar model for protein structure prediction. Comput. Oper. Res. 53, 128–153 (2015)

    Article  MathSciNet  Google Scholar 

  16. Giaquinta, E., Pozzi, L.: An effective exact algorithm and a new upper bound for the number of contacts in the hydrophobic-polar two-dimensional lattice model. J. Comput. Biol. 20, 593–609 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Y., Wu, L., Wang, S.: Solving two-dimensional hp model by firefly algorithm and simplified energy function. Math. Probl. Eng. 2013, Article ID: 398141 (2013)

    Google Scholar 

  18. Huo, Y., Zhu, Q., Wang, S., Wu, L.: Polymorphic BCO for protein folding model. J. Comput. Inf. Syst. 6, 1787–1794 (2010)

    Google Scholar 

  19. Zhang, Y., Wang, S., Ji, G., Dong, Z.: Genetic pattern search and its application to brain image classification. Math. Probl. Eng. 2913, Article ID: 580876 (2013)

    Google Scholar 

  20. Al Adwan, F., Al Shraideh, M., Al Saidat, M.R.S.: A genetic algorithm approach for breaking of simplified data encryption standard. Int. J. Secur. Appl. 9, 295–303 (2015)

    Google Scholar 

  21. Gibbs, M.S., Maier, H.R., Dandy, G.C.: Using characteristics of the optimisation problem to determine the genetic algorithm population size when the number of evaluations is limited. Environ. Modell. Softw. 69, 226–239 (2015)

    Article  Google Scholar 

  22. Javaid, W., Tariq, A., Hussain, I.: A comparison of a standard genetic algorithm with a hybrid genetic algorithm applied to cell formation problem. Adv. Mech. Eng. 11, Article ID: 301751 (2014)

    Google Scholar 

  23. Wang, S., Lu, Z., Wei, L., Ji, G., Yang, J.: Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem. Simulation 92, 601–616 (2016)

    Article  Google Scholar 

  24. Sindhuja, L.S., Padmavathi, G.: Replica node detection using enhanced single hop detection with clonal selection algorithm in mobile wireless sensor networks. J. Comput. Netw. Commun. 13, Article ID: 1620343 (2016)

    Google Scholar 

  25. Shui, X.G., Zuo, X.Q., Chen, C., Smith, A.E.: A clonal selection algorithm for urban bus vehicle scheduling. Appl. Soft Comput. 36, 36–44 (2015)

    Article  Google Scholar 

  26. Marinaki, M., Marinakis, Y.: A hybridization of clonal selection algorithm with iterated local search and variable neighborhood search for the feature selection problem. Memetic Comput. 7, 181–201 (2015)

    Article  Google Scholar 

  27. Cozma, P., Dragoi, E.N., Mamaliga, I., Curteanu, S., Wukovits, W., Friedl, A., Gavrilescu, M.: Modelling and optimization of CO2 absorption in pneumatic contactors using artificial neural networks developed with clonal selection-based algorithm. Int. J. Nonlinear Sci. Numer. Simul. 16, 97–110 (2015)

    Article  MathSciNet  Google Scholar 

  28. Kim, D.H., Cho, J.H.: Advanced intelligence tuning using hybrid of clonal selection and genetic algorithm, GM and PM. Int. J. Comput. Intell. Appl. 14, 19 (2015)

    Article  Google Scholar 

  29. Lin, C.D., Anderson-Cook, C.M., Hamada, M.S., Moore, L.M., Sitter, R.R.: Using genetic algorithms to design experiments: a review. Qual. Reliab. Eng. Int. 31, 155–167 (2015)

    Article  Google Scholar 

  30. Zhang, Y., Huo, Y.: Artificial immune system for protein folding model. J. Converg. Inf. Technol. 6, 55–61 (2011)

    Google Scholar 

  31. Zhang, T., Ding, Y., Shao, S.: Protein subcellular location prediction based on pseudo amino acid composition and immune genetic algorithm. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNBI), vol. 4115, pp. 534–542. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Feng, C., Du, S., Yan, J., Wang, Q., Phillips, P.: Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging Syst. Technol. 25, 153–164 (2015)

    Article  Google Scholar 

  33. Phillips, P., Dong, Z., Yang, J.: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progr. Electromagn. Res. 152, 41–58 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This paper was supported by Natural Science Foundation of Jiangsu Province (BK20150983), Program of Natural Science Research of Jiangsu Higher Education Institutions (15KJB470010), Nanjing Normal University Research Foundation for Talented Scholars (2013119XGQ0061, 2014119XGQ0080), Open Project Program of the State Key Lab of CAD&CG, Zhejiang University (A1616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, S., Wu, L., Huo, Y., Wu, X., Wang, H., Zhang, Y. (2016). Predict Two-Dimensional Protein Folding Based on Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic Algorithm. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2016. IDEAL 2016. Lecture Notes in Computer Science(), vol 9937. Springer, Cham. https://doi.org/10.1007/978-3-319-46257-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46257-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46256-1

  • Online ISBN: 978-3-319-46257-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics