An Introduction on Formal and Computational Models in Popular Music Analysis and Generation

  • Moreno AndreattaEmail author
  • Gilles Baroin


This article provides a first introduction to some formal and computational models applied in the analysis and generation of popular music (including rock, jazz, and chanson). It summarizes the main philosophy underlying the project entitled “Modèles formels dans et pour la musique pop, le jazz et la chanson”, which constitutes one of the research axes of the GDR ESARS (Esthétique, Art & Science). Initially conceived as an extension of the MISA project carried on by the Music Representation Team at IRCAM, this research axis aims at bringing together researchers from different horizons, from the traditional MIR community of Music Information Retrieval to the most sophisticated approaches in mathematical music theory and computational musicology. It also includes an epistemological and critical evaluation of the relations between music and mathematics, together with some programmatic reflections on the possible cognitive and perceptual implications of this research.


Geometric Representation Hamiltonian Cycle Popular Music Music Information Retrieval Music Theorist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acotto E, Andreatta M (2012) Between mind and mathematics. Different kinds of computational representations of music. Math Soc Sci 199:9–26Google Scholar
  2. Agon C (2004). Langages de programmation pour la composition musicale. Habilitation à Diriger des Recherches, Université de Paris 6 Google Scholar
  3. Albini G, Antonini S (2009) Hamiltonian cycles in the topological dual of the Tonnetz. In: Proceedings of the Yale MCM conference, Springer, LNCSGoogle Scholar
  4. Andreatta M (2010) Mathematica est exercitium musicae. La recherche ‘mathémusicale’ et ses interactions avec les autres disciplines, Habilitation à Diriger des Recherches, IRMA/Université de StrasbourgGoogle Scholar
  5. Andreatta M (2014a) Modèles formels dans et pour la musique pop, le jazz et la chanson: introduction et perspectives futures. In: Kapoula Z, Lestocart L-J, Allouche J-P (eds) Esthétique & Complexité II: Neurosciences, évolution, épistémologie, philosophie, éditions du CNRS, pp 69–88Google Scholar
  6. Andreatta M (2014b) Math’n pop: géométrie et symétrie eu service de la chanson. Tangente. L’aventure mathématique, special issue devoted on the creative process in mathematics, pp 92–97Google Scholar
  7. Andreatta M (2016) Musique savante/musiques actuelles: articulations, special issue of the journal Musimédiane, French Society of Music AnalysisGoogle Scholar
  8. Andreatta M, Ehresmann A, Guitart R, Mazzola G (2013) Towards a categorical theory of creativity. In: Yust J et al. (eds) Proceedings of the mathematics and computation in music conference 2013—Springer, Lecture notes in computer science, vol 7937Google Scholar
  9. Baroin G (2011) The planet-4D model: an original hypersymmetric music space based on graph theory. In: Agon C, Andreatta M, Assayag G, Amiot E, Bresson J, Mandereau J (eds) Proceedings of the mathematics and computation in music conference 2011, Springer, Lecture notes in computer science, vol 6726, pp 326–329Google Scholar
  10. Bergomi M (2015) Dynamical systems and musical structures, PhD, UPMC/LIM Milan/IRCAMGoogle Scholar
  11. Bergomi M, Andreatta M (2015) Math’n pop versus Math’n folk? A computational (ethno)-musicological approach. In: Proceedings international folk music analysis conference, Paris, pp 32–34Google Scholar
  12. Bergomi M, Fabbri F, Andreatta M (2015) Hey maths! Modèles formels et computationnels au service des Beatles. Volume! La revue des musiques populaires (eds by Grégoire Tosser and Olivier Julien, special issue devoted to the Beatles)Google Scholar
  13. Bigo L (2013) Représentations symboliques musicales et calcul spatial, PhD, University of Paris Est/IRCAMGoogle Scholar
  14. Bigo L, Andreatta M (2014) A geometrical model for the analysis of pop music. Sonus 35(1):36–48Google Scholar
  15. Bigo L, Andreatta M (2015) Topological structures in computer-aided music analysis. In: Meredith D (ed) Computational music analysisy. Springer, pp 57–80Google Scholar
  16. Bigo L, Andreatta M, Giavitto J-L, Michel O, Spicher A (2013) Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust J et al (eds) Proceedings of the mathematics and computation in music conference 2013, Springer, lecture notes in computer science, vol 7937, pp 38–51Google Scholar
  17. Boulez P, Connes A (2011) Creativity in mathematics and music. Mathematics and computation in music conference, IRCAM. Video available online at the address
  18. Briginshaw S (2012) A neo-riemannian approach to jazz analysis. Nota Bene Can Undergraduate J Musicol 5(1, Article 5). Available online at
  19. Capuzzo G (2004) Neo-Riemannian theory and the analysis of pop-rock music. Music Theory Spectrum 26(2):177–199CrossRefGoogle Scholar
  20. Connes A (2004) CNRS images, Vidéothèque du CNRS, 2004. Available online at
  21. Cohn R (2012) Audacious euphony: chromatic harmony and the triad’s second nature. Oxford University PressGoogle Scholar
  22. Euler L (1774) De harmoniae veris principiis per speculum musicum repraesentatis. In: Novi Commentarii academiae scientiarum Petropolitanae 18:330–353Google Scholar
  23. Gollin E, Rehding A (2014) The Oxford handbook of Neo-Riemannian music theories. OxfordGoogle Scholar
  24. Hascher X, Papadopoulos A (2015) Leonhard Euler. Mathématicien, physicien et théoricien de la musique, CNRS éditionsGoogle Scholar
  25. Hascher X (2007) A harmonic investigation into three songs of the beach boys: all summer long, help me Rhonda, California Girls. SONUS 27(2):27–52Google Scholar
  26. Lewin D (1987/2007) Generalized musical intervals and transformations. Yale University Press (orig. Yale University Press. Reprint Oxford University Press, 2007)Google Scholar
  27. Lewin D (1993/2007) Musical form and transformation. Yale University Press (orig. Yale University Press. Reprint Oxford University Press, 2007)Google Scholar
  28. Mersenne M (1636) Harmonie universelle, contenant la théorie et la pratique de la musique. ParisGoogle Scholar
  29. Seress H, Baroin G (2016) Le Tonnetz en musique savante et en musique populaire. In: Andreatta M (ed) Musique savante/musiques actuelles: articulations, Musimédiane (forthcoming)Google Scholar
  30. Tagg PH (1982) Analysing popular music: theory, method and practice. Popular Music 2:37–67CrossRefGoogle Scholar
  31. Volk A, Honingh A (2002) Mathematical and computational approaches to music: three methodological reflections. Spec Issue J Math Music 6(2)Google Scholar
  32. Zatorre RJ, Krumhansl CL (2002) Mental models and musical minds. Science 298(5601):2138–2139. (13 December)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IRCAM/CNRS/UPMC & IRMA/GREAM/Université de StrasbourgStrasbourgFrance
  2. 2.ENAC & LLA Creatis/CNRS, Univ de ToulouseToulouseFrance

Personalised recommendations