Skip to main content

An Investigation of the Prompt Oblique Detonation Wave Induced by a Finite-Length Wedge

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 1
  • 1257 Accesses

Abstract

The prompt oblique detonation waves (ODWs) induced by finite-length wedges are investigated by numerical simulations. The numerical results show that premature ignition resulting from the initial conditions can result in the formation of the prompt ODWs that cannot take place spontaneously over the wedges. The fully coupled and the partially coupled prompt ODWs are observed in the flow field. The partially coupled prompt ODW is unstable; it will be destabilized by the local explosion resulting from the unstable combustion wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verreault, J., Higgins, A.J.: Initiation of detonation by conical projectiles. Proc. Combust. Inst. 33, 2311–2318 (2011)

    Article  Google Scholar 

  2. Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids. 6, 1600–1611 (1994)

    Article  MATH  Google Scholar 

  3. Figueira da Silva, L.F., Deshaies, B.: Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust. Flame. 121, 152–166 (2000)

    Article  Google Scholar 

  4. Papalexandris, M.V.: A numerical study of wedge-induced detonations. Combust. Flame. 120, 526–538 (2000)

    Article  Google Scholar 

  5. Walter, M.A.T., Figueira da Silva, L.F.: Numerical study of detonation stabilization by finite length wedges. AIAA J. 44(2), 353–361 (2006)

    Article  Google Scholar 

  6. Pimentel, C.A.R., Azevedo, J.L.F., Figueira da Silva, L.F.: Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions. J. Braz. Soc. Mech. Sci. XXIV, 149–157 (2002)

    Article  Google Scholar 

  7. Kasahara, J., Takeishi, A., Kuroda, H., Horiba, M., Matsukawa, K., Leblanc, J.E., Endo, T., Fujiwara, T.: Experimental observation of oblique detonation waves around hypersonic free projectiles. In: Takayama, K., Sasoh, A. (eds.) Ram accelerators, pp. 263–270. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Kasahara, J., Fujiwara, T., Endo, T., Arai, T.: Chapman–Jouguet oblique detonation structure around hypersonic projectiles. AIAA J. 39, 1553–1561 (2001)

    Article  Google Scholar 

  9. Kasahara, J., Arai, T., Chiba, S., Takazawa, K., Tanahashi, Y., Matsuo, A.: Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen /krypton mixtures. Proc. Combust. Inst. 29, 2817–2824 (2002)

    Article  Google Scholar 

  10. Maeda, S., Inada, R., Kasahara, J., Matsuo, A.: Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc. Combust. Inst. 33, 2343–2349 (2011)

    Article  Google Scholar 

  11. Lefebvre, M.H., Fujiwara, T.: Numerical modeling of combustion processes induced by a supersonic conical blunt body. Combust. Flame. 100, 85–93 (1995)

    Article  Google Scholar 

  12. Liu, Y., Dan, W., Yao, S.-B., Wang, J.-P.: Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow mach number. Combust. Sci. Tech. 187(6), 843–856 (2015)

    Article  Google Scholar 

  13. Korobeinikov, V.P., Levin, V.A., Markov, V.V., Chernyi, G.G.: Propagation of blast waves in a combustible gas. Astronaut. Acta 17(4-5), 529–537 (1972)

    Google Scholar 

  14. Liu, Y.-F.: Numerical studies on detonation and pulse detonation engines. Peking University, Beijing (2004)

    Google Scholar 

  15. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, J.H.S.: The detonation phenomenon. Cambridge University Press, New York, NY (2008)

    Book  Google Scholar 

  18. Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131, 29–46 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, Y., Wang, J. (2017). An Investigation of the Prompt Oblique Detonation Wave Induced by a Finite-Length Wedge. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 1. Springer, Cham. https://doi.org/10.1007/978-3-319-46213-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46213-4_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46211-0

  • Online ISBN: 978-3-319-46213-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics