Skip to main content

Mosquito Hypersensitivity: Clinical Updates

Abstract

Mosquitoes, among the most common biting insects, are classified within the Order Diptera and Family Culicidae with over 3700 species represented worldwide. While representing major global vectors for bite transmission of infectious diseases, they also are a source of significant morbidity due to immune mediated local and systemic reactions. This chapter will focus on the clinical, immunologic, diagnostic, and therapeutic aspects of mosquito bite hypersensitivity, a common affliction for both children and adults. Typically manifesting as immediate and/or delayed local reactions, the impact on quality of life and particularly outdoor activity may be profound, particularly in the setting of large local reactions and when systemic symptoms are also present. Severe local reactions such as Skeeter syndrome and systemic reactions including generalized urticaria, angioedema, and anaphylaxis have been reported. Young children, immune deficient persons, and immigrants or visitors to an area with “new” exposure to indigenous mosquitoes may be at increased risk for more severe reactions.

The opinions expressed herein are those of the authors and do not reflect the official policy or position of the Department of the Army/Navy, the Department of Defense or the US government.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract. 2014;16:1–23.

    PubMed  Google Scholar 

  2. Juckett G. Arthropod bites. Am Fam Physician. 2013;88:841–7.

    PubMed  Google Scholar 

  3. Darsie RF, Ward RA, Chang CC, Litwak T. WRBU-Traditional Mosquito Classification. 2013. P. 1–65. at BugGuide.net. http://www.mosquitocatalog.org/files/pdfs/mq_ClassificationTraditional201309.pdf. Accessed 2 Feb 2016.

  4. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC, Strickman DA. Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One. 2015;10(7):e0133602. doi:10.1371/journal.pone.0133602.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  5. Peng Z, Yang M, Simons FER. Immunologic mechanisms in mosquito allergy: correlation of skin reactions with specific IgE and IgG antibodies and lymphocyte proliferation response to mosquito antigens. Ann Allergy Asthma Immunol. 1996;77:238–44.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Peng Z, Simons FER. Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol. 2004;133:198–209.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Wirtz RA. Allergic and toxic reactions to non-stinging arthropods. Annu Rev Entomol. 1984;29:47–69.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Reunala T, Brummer-Korvenkontio H, Lappalainen P, Rasanen L, Palosuo T. Immunology and treatment of mosquito bites. Clin Exp Allergy. 1990;20:19–24.

    CrossRef  PubMed  Google Scholar 

  9. Kemp ED. Bites and stings of the arthropod kind: treating reactions that can range from annoying to menacing. Postgrad Med. 1998;103:88–104.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Benson RL. Diagnosis and treatment of sensitization to mosquitoes. J Allergy. 1936;8:47–59.

    CrossRef  Google Scholar 

  11. Rockwell EM. Some investigational studies concerning reactions to insect bites. Ann Allergy. 1952;10:404–10.

    CAS  PubMed  Google Scholar 

  12. Rockwell FM, Johnson P. Insect reactions II: evaluation of allergic reactions. J Invest Dermatol. 1952;19:137–55.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Oka K, Ohtaki N. Clinical observations of mosquito bite reactions in man: a survey of the relationship between age and bite reaction. J Dermatol. 1989;16:212–9.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Simons FER, Peng Z. Skeeter syndrome. J Allergy Clin Immunol. 1999;104:705–7.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Engler RJ. Mosquito bite pathogenesis in necrotic skin reactors. Curr Opin Allergy Clin Immunol. 2001;1(4):349–52.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Peng Z, Simons FE. Advances in mosquito allergy. Curr Opin Allergy Clin Immunol. 2007;7:350–4.

    CrossRef  CAS  PubMed  Google Scholar 

  17. McCormack DR, Salata KF, Hershey J, Carpenter GB, Engler RJ. Mosquito bite anaphylaxis: immunotherapy with whole body extracts. Ann Allergy. 1995;74:39–44.

    CAS  Google Scholar 

  18. Walker GB, Harrison PV. Seasonal bullous eruption due to mosquitoes. Clin Exp Dermatol. 1985;10:127–32.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Grossman J, Baum J, Gluckman J, Fusner J, Condemi JJ. The effect of aging and acute illness on delayed hypersensitivity. J Allergy Clin Immunol. 1975;55(4):268–75.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Shibasaka M, Sumzaki R, Takita H. Hypersensitivity reactions to mosquito bites in congenital agammaglobulinemia. Ann Allergy. 1986;56:81–4.

    Google Scholar 

  21. Smith KJ, Skelton 3rd HG, Vogel P, Yeager J, Baxter D, Wagner KF. Exaggerated insect bite reactions in patients positive for HIV. Military medical consortium for the advancement of retroviral research. J Am Acad Dermatol. 1993;29(2 Pt 1):269–72.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Diven DG, Newton RC, Ramsey KM. Heightened cutaneous reactions to mosquito bites in patients with acquired immunodeficiency syndrome receiving zidovudine. Arch Intern Med. 1988;148:2296–7.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Kanno H, Onodera H, Endo M, et al. Vascular lesion in a patient of chronic active Epstein-Barr virus infection with hypersensitivity to mosquito bites: vasculitis induced by mosquito bite with the infiltration of nonneoplastic Epstein-Barr virus-positive cells and subsequent development of natural killer/T-cell lymphoma with angiodestruction. Hum Pathol. 2005;36:212–8.

    CrossRef  PubMed  Google Scholar 

  24. Yoon TY, Kim YG, Kim JW, Kim MK. Nodal marginal zone lymphoma in association with hydroa vacciniforme-like papulovesicular eruption, hypersensitivity to mosquito bites and insect bite-like reaction. Br J Dermatol. 2005;153:210–2.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Yamamoto T, Fujii K, Tsuji K, et al. Characterization of Epstein-Barr virus infected natural killer lymphocytes in a patient with hypersensitivity to mosquito bites. J Am Acad Dermatol. 2005;53:912–4.

    CrossRef  PubMed  Google Scholar 

  26. Koyama M, Takeshita Y, Sakata A, et al. Cytotoxic chemotherapy successfully induces durable complete remission in 2 patients with mosquito allergy resulting from Epstein-Barr virus-associated T−/natural killer cell lymphoproliferative disease. Int J Hematol. 2005;82:437–40.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Sawada A, Sato E, Koyama M, et al. NK-cell repertoire is feasible for diagnosing Epstein Barr virus-infected NK-cell lymphoproliferative disease and evaluating the treatment effect. Am J Hematol. 2006;81:576–81.

    CrossRef  PubMed  Google Scholar 

  28. Cho JH, Kim HS, Ko YH, Park CS. Epstein-Barr virus infected natural killer cell lymphoma in a patient with hypersensitivity to mosquito bite. J Infect. 2006;52:e173–6.

    CrossRef  PubMed  Google Scholar 

  29. Asada H. Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J Dermatol Sci. 2007;45:153–60.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Miyake T, Yamamoto T, Hirai Y, Otsuka M, Hamada T, Tsuji K, Morizane S, Suzuki D, Aoyama Y, Iwatsuki K. Survival rates and prognostic factors of Epstein-Barr virus-associated hydroa vacciniforme and hypersensitivity to mosquito bites. Br J Dermatol. 2015;172:5663.

    CrossRef  CAS  Google Scholar 

  31. Chiu TM, Lin YM, Wang SC, Tsai YG. Hypersensitivity to mosquito bites as the primary clinical manifestation of an Epstein-Barr virus infection. J Microbiol Immunol Infect. 2014;49(4):613–6.

    CrossRef  PubMed  Google Scholar 

  32. Simons F, Peng Z. Mosquito allergy. In: Levine M, Lockey R, editors. American Academy of Allergy, Asthma and Immunology monograph on insect allergy. 4th ed. Milwaukee, Wisconsin: American Academy of Allergy, Asthma and Immunology; 2003. p. 175–203.

    Google Scholar 

  33. Brown A, Griffitts THD, Erwin S, Dyrenforth LY. Arthus’s phenomenon from mosquito bites. South Med J. 1938;31:590–6.

    CrossRef  Google Scholar 

  34. Lavender CJ, Fyfe JA, Azuolas J, Brown K, Evans RN, Ray LR, Johnson PD. Risk of Buruli ulcer and detection of mycobacterium ulcerans in mosquitoes in southeastern Australia. PLoS Negl Trop Dis. 2011;5(9):e1305.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Johnson PD, Hayman JA, Quek TY, Fyfe JA, Jenkin GA, Buntine JA, Athan E, Birrell M, Graham J, Lavender CJ. Mycobacterium ulcerans study team. Consensus recommendations for the diagnosis, treatment and control of mycobacterium ulcerans infection (Bairnsdale or Buruli ulcer) in Victoria, Australia. Med J Aust. 2007;186(2):64–8.

    PubMed  Google Scholar 

  36. Ampah KA, Nickel B, Asare P, Ross A, De-Graft D, Kerber S, Spallek R, Singh M, Pluschke G, Yeboah-Manu D, Röltgen K. A Sero-epidemiological approach to explore transmission of mycobacterium ulcerans. PLoS Negl Trop Dis. 2016;10(1):e0004387.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Reunala T, Brummer-Korvenkontio H, Rasanen L, Francois G, Palosuo T. Passive transfer of cutaneous mosquito bite hypersensitivity by IgE anti-saliva antibodies. J Allergy Clin Immunol. 1994;94:902–6.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Horsmanheimo L, Harvima IT, Harvima RJ, Brummer-Korvenkontio H, François G, Reunala T. Histamine and leukotriene C4 release in cutaneous mosquito-bite reactions. J Allergy Clin Immunol. 1996;98:408–11.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Demeure CE, Brahimi K, Hacini F, Marchand F, Péronet R, Huerre M, St-Mezard P, Nicolas JF, Brey P, Delespesse G, Mécheri S. Anopheles Mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol. 2005;174:3932–40.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Depinay N, Hacini F, Beghdadi W, Peronet R, Mécheri S. Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J Immunol. 2006;176:4141–6.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Karppinen A, Rantala I, Vaalasti A, Palosuo T, Reunala T. Effect of cetirizine on the inflammatory cells in mosquito bites. Clin Exp Allergy. 1996;26:703–9.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Arias-Cruz A, Avitia-Valenzuela E, González-Díaz SN, Galindo-Rodríguez G. Epidemiology of mosquito bite allergy in the centre of allergy and clinical immunology of Monterrey. Mexico J Allergy Clin Immunol. 2006;117:S128.

    CrossRef  Google Scholar 

  43. Manrique López MA, González Díaz SN, Arias Cruz A, Sedó Mejía GA, Canseco Villarreal JI, Gómez Retamoza EA, Padrón López OM, Cruz Moreno MA, Cisneros Salazar GD. [Adverse reactions to mosquito bites in scholars from Monterrey, Nuevo Leon, Mexico]. Rev Alerg Mex. 2010;57(3):79–84. Spanish.

    Google Scholar 

  44. Feingold BF, Benjamini F, Michaeli D. The Allergic Responses to insect bites. Annu Rev Entomol. 1965;13:137–55. (Phases of reactions based on original categorization by McKiel JA in a 1955 unpublished Ph.D. thesis at Queen’s University, Kingston, Ontario, titled “Reactions to mosquito bites. Studies of causation and remedial measures. ”)

    CrossRef  Google Scholar 

  45. Heilesen B. Studies on mosquito bites. Acta Allergol. 1949;11:245–67. (published online in 2007 in the European Journal of Allergy and Clinical Immunology 1949;2:245–267)

    CrossRef  Google Scholar 

  46. Mellaney K. Man’s reaction to mosquito bites. Nature, Lond. 1946;158:554.

    Google Scholar 

  47. Peng Z, Ho MK, Li C, Simons FE. Evidence for natural desensitization to mosquito salivary allergens: mosquito saliva specific IgE and IgG levels in children. Ann Allergy Asthma Immunol. 2004;93(6):553–6.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Peng Z, Simons FER. A prospective study of naturally acquired sensitization and subsequent desensitization to mosquito bites and concurrent antibody responses. J Allergy Clin Immunol. 1998;101:284–6.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FE. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immunol. 2004;114:1189–94.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Hassoun S, Drouet M, Sabbah A. [Anaphylaxis caused by a mosquito: 2 case reports]. Allerg Immunol (Paris). 1999;31(8):285–7.

    Google Scholar 

  51. Reiter N, Reiter M, Altrichter S, Becker S, Kristensen T, Broesby-Olsen S, Church MK, Metz M, Maurer M, Siebenhaar F. Anaphylaxis caused by mosquito allergy in systemic mastocytosis. Lancet. 2013;382(9901):1380.

    CrossRef  PubMed  Google Scholar 

  52. Sabbah A, Hassoun S, Drouet M, Lauret MG, Doucet M. [The wasp/mosquito syndrome]. Allerg Immunol (Paris). 1999;31(6):175–84.

    Google Scholar 

  53. Sabbah A, Hassoun S, Drouet M, Lauret MG, Doucet M. [The wasp-mosquito syndrome: extension of cross-allergenicity to the horsefly]. Allerg Immunol (Paris). 2000;32(1):16–9.

    Google Scholar 

  54. Gaig P, Garcia-Ortega P, Enrique E, Benet A, Bartolome B, Palacios R. Serum sickness-like syndrome due to mosquito bite. J Investig Allergol Clin Immunol. 1999;9:190–2.

    CAS  PubMed  Google Scholar 

  55. Ishihara S, Yabuta R, Tokura Y, Ohshima K, Tagawa S. Hypersensitivity to mosquito bites is not an allergic disease, but an Epstein-Barr virus-associated lymphoproliferative disease. Int J Hematol. 2000;72:223–8.

    CAS  PubMed  Google Scholar 

  56. Mori T, Okamoto S, Kuramochi S, Ikeda Y. An adult patient with hypersensitivity to mosquito bites developing mantle cell lymphoma. Int J Hematol. 2000;71:259–62.

    CAS  PubMed  Google Scholar 

  57. Yabuta R, Tokura Y, Ohshima K, Tagawa S. Hypersensitivity to mosquito bites is not an allergic disease, but an Epstein-Barr virus-associated lymphoproliferative disease. Int J Hematol. 2000;72:223–8.

    PubMed  Google Scholar 

  58. Pacheco SE, Gottschalk SM, Gresik MV, Dishop MK, Okmaura T, et al. Chronic active Epstein-Barr virus infection of natural killer cells presenting as severe skin reaction to mosquito bites. J Allergy Clin Immunol. 2005;116:470–2.

    CrossRef  PubMed  Google Scholar 

  59. Park S, Ko YH. Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disorders. J Dermatol. 2014;41:29–39. doi:10.1111/1346-8138.12322.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Hong M, Ko YH, Yoo KH, Koo HH, Kim SJ, Kim WS, Park H. EBV-positive T/NK-cell Lymphoproliferative disease of childhood. Korean J Pathol. 2013;47:137–47.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, Naoe T, Esaki S, Kikuta A, Sawada A, Kawa K, Ohshima K, Nakamura S. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Lee WI, Lin JJ, Hsieh MY, Lin SJ, Jaing TH, Chen SH, Hung IJ, Yang CP, Chen CJ, Huang YC, Li SP, Huang JL. Immunologic difference between hypersensitivity to mosquito bite and hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus infection. PLoS One. 2013;8(10):e76711.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang JH, Lee JH, Kim M, Cho BK, Song CH, Ock SM, Park HJ. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma arising in a patient with hypersensitivity to mosquito bites. Korean J Fam Med. 2015;36:35–41.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Mo X, Guo W, Ye H. Primary indeterminate dendritic cell tumor of skin correlated to mosquito bite. Medicine (Baltimore). 2015;94:e1443. doi:10.1097/MD.0000000000001443.

    CrossRef  Google Scholar 

  65. Suzuki D, Tsuji K, Yamamoto T, Fujii K, Iwatsuki K. Production of proinflammatory cytokines without invocation of cytotoxic effects by an Epstein-Barr virus-infected natural killer cell line established from a patient with hypersensitivity to mosquito bites. Exp Hematol. 2010;38(10):933–44.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Seo N, Tokura Y, Ishihara S, Takeoka Y, Tagawa S, Takigawa M. Disordered expression of inhibitory receptors on the NK1-type natural killer (NK) leukaemic cells from patients with hypersensitivity to mosquito bites. Clin Exp Immunol. 2000;120:413–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakakibara Y, Wada T, Muraoka M, Matsuda Y, Toma T, Yachie A. Basophil activation by mosquito extracts in patients with hypersensitivity to mosquito bites. Cancer Sci. 2015;106:965–71.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cantillo JF, Fernández-Caldas E, Puerta L. Immunological aspects of the immune response induced by mosquito allergens. Int Arch Allergy Immunol. 2014;165:271–82.

    CrossRef  CAS  PubMed  Google Scholar 

  69. Srivastava D, Singh BP, Sudha VT, Arora N, Gaur SN. Immunotherapy with mosquito (Culex quinquefasciatus) extract: a double-blind, placebo-controlled study. Ann Allergy Asthma Immunol. 2007;99(3):273–80.

    CrossRef  PubMed  Google Scholar 

  70. Bemanian MH, Alizadeh Korkinejad N, Shirkhoda S, Nabavi M, Pourpak Z. Assessment of sensitization to insect aeroallergens among patients with allergic rhinitis in Yazd City, Iran. Iran J Allergy Asthma Immunol. 2012;11:253–8.

    PubMed  Google Scholar 

  71. Kausar MA, Vijayan VK, Bansal SK, Menon BK, Vermani M, Agarwal MK. Mosquitoes as sources of inhalant allergens: clinicoimmunologic and biochemical studies. J Allergy Clin Immunol. 2007;120:1219–21.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Peng Z, Xu WW, Sham Y, Lam H, Sun D, Cheng L, Rasic NF, Guan Q, James AA, Simons FE. Mosquito salivary allergen Aed a 3: cloning, comprehensive molecular analysis, and clinical evaluation. Allergy. 2016;71(5):621–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wongkamchai S, Khongtak P, Leemingsawat S, Komalamisra N, Junsong N, Kulthanan K, Wisuthsarewong W, Boitano JJ. Comparative identification of protein profiles and major allergens of saliva, salivary gland and whole body extracts of mosquito species in Thailand. Asian Pac J Allergy Immunol. 2010;28(2–3):162–9.

    CAS  PubMed  Google Scholar 

  74. Peng Z, Li H, Simons FE. Immunoblot analysis of salivary allergens in 10 mosquito species with worldwide distribution and the human IgE responses to these allergens. J Allergy Clin Immunol. 1998;101(4 Pt 1):498–505.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Malafronte Rdos S, Calvo E, James AA, Marinotti O. The major salivary gland antigens of Culex quinquefasciatus are D7-related proteins. Insect Biochem Mol Biol. 2003;33(1):63–71.

    CrossRef  PubMed  Google Scholar 

  76. Jeon SH, Park JW, Lee BH. Characterization of human IgE and mouse IgG1 responses to allergens in three mosquito species by immunoblotting and ELISA. Int Arch Allergy Immunol. 2001;126:206–12.

    CrossRef  CAS  PubMed  Google Scholar 

  77. Ribeiro JM. Role of saliva in blood-feeding by arthropods. Annu Rev Entomol. 1987;32:463–78.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995;4(3):143–52.

    CAS  PubMed  Google Scholar 

  79. Peng Z, Estelle F, Simons R. Mosquito allergy and mosquito salivary allergens. Protein Pept Lett. 2007;14:975–81.

    CrossRef  CAS  PubMed  Google Scholar 

  80. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JM. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med. 2001;194:331–42.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grossman GL, James AA. The salivary glands of the vector mosquito, Aedes aegypti, express a novel member of the amylase gene family. Insect Mol Biol. 1993;1:223–32.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Rossignol PA, Lueders AM. Bacteriolytic factor in the salivary glands of Aedes aegypti. Comp Biochem Physiol B. 1986;83:819–22.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Cross ML, Cupp EW, Enriquez FJ. Differential modulation of murine cellular immune responses by salivary gland extract of Aedes aegypti. Am J Trop Med Hyg. 1994;51:690–6.

    CrossRef  CAS  PubMed  Google Scholar 

  84. Owhashi M, Harada M, Suguri S, Ohmae H, Ishii A. The role of saliva of Anopheles Stephensi in inflammatory response: identification of a high molecular weight neutrophil chemotactic factor. Parasitol Res. 2001;87:376–82.

    CrossRef  CAS  PubMed  Google Scholar 

  85. Sales-Campos H, de Souza PR, Basso PJ, Ramos AD, Nardini V, Chica JE, Capurro ML, Sá-Nunes A, de Barros Cardoso CR. Aedes aegypti Salivary gland extract ameliorates experimental inflammatory bowel disease. Int Immunopharmacol. 2015;26:13–22.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med. 2004;10:S98–S109.

    CrossRef  CAS  PubMed  Google Scholar 

  87. Harbach R. The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa. 2007;1668:47.

    Google Scholar 

  88. Bigalke B, Schuster A, Sopova K, Wurster T, Stellos K. Platelets in atherothrombosis diagnostic and prognostic value of platelet activation in patients with atherosclerotic diseases. Curr Vasc Pharmacol 2012;10:589–596. PubMed

    Google Scholar 

  89. Barros MS, Gomes E, Gueroni DI, Ramos AD, Mirotti L, Florsheim E, Bizzarro B, Lino CN, Maciel C, Lino-Dos-Santos-Franco A, Tavares-de-Lima W, Capurro ML, Russo M, Sá-Nunes A. Exposure to Aedes aegypti bites induces a mixed-type Allergic response following salivary antigens challenge in mice. PLoS One. 2016;11(5):e0155454. doi:10.1371/journal.pone.0155454.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  90. Racioppi JV, Spielman A. Secretory proteins from the salivary glands of adult Aedes aegypti mosquitoes. Insect Biochem. 1987;17:503–11.

    CrossRef  CAS  Google Scholar 

  91. Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM, Chandra PK, et al. An annotated catalogue of salivary gland transcripts in the adult female mosquito. Aedes aegypti BMC Genom. 2007;8:6.

    Google Scholar 

  92. Peng Z, Xu W, James AA, Lam H, Sun D, Cheng L, Simons FE. Expression, purification, characterization and clinical relevance of rAed a 1–a 68-kDa recombinant mosquito Aedes aegypti salivary allergen. Int Immunol. 2001;13:1445–52.

    CrossRef  CAS  PubMed  Google Scholar 

  93. Xu W, Simons FE, Peng Z. Expression and rapid purification of an Aedes aegypti salivary allergen by a baculovirus system. Int Arch Allergy Immunol. 1998;115:245–51.

    CrossRef  CAS  PubMed  Google Scholar 

  94. Reno HE, Novak RJ. Characterization of apyrase- like activity in Ochlerotatus Triseriatus, Ochlerotatus Hendersoni, and Aedes aegypti. Am J Trop Med Hyg. 2005;73:541–5.

    PubMed  Google Scholar 

  95. Calvo E, Mans BJ, Ribeiro JM, Andersen JF. Multifunctionality and mechanism of ligand binding in a mosquito anti-inflammatory protein. Proc Natl Acad Sci U S A. 2009;106:3728–33.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  96. James AA, Blackmer K, Marinotti O, Ghosn CR, Racioppi JV. Isolation and characterizationof the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti. Mol Biochem Parasitol. 1991;44:245–53.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Peng Z, Xu W, Lam H, Cheng L, James AA, Simons FE. A new recombinant mosquito salivary allergen, rAed a 2: allergenicity, clinical relevance, and cross-reactivity. Allergy. 2006;61:485–90.

    CrossRef  CAS  PubMed  Google Scholar 

  98. Peng Z, Lam H, Xu W, Cheng L, Chen YL, FER S. Characterization and clinical relevance of two recombinant mosquito Aedes aegypti salivary allergens, rAed a 1 and rAed a 2. J Allergy Clin Immunol. 1998;101:32.

    Google Scholar 

  99. Nascimento EP, dos Santos Malafronte R, Marinotti O. Salivary gland proteins of the mosquito Culex quinquefasciatus. Arch Insect Biochem Physiol. 2000;43:9–15.

    CrossRef  CAS  PubMed  Google Scholar 

  100. Beckett AN, Sun W, Simons FER, Ma Y, Peng Z. Role of recombinant mosquito salivary allergens in the diagnosis of individuals with allergic reactions to mosquito bites. J Allergy Clin Immunol. 2004;13:74.

    CrossRef  Google Scholar 

  101. Li C, Beckett AN, Simons FER, Li C, Zhang T, Peng Z. A new 67-kDa recombinant Aedes aegypti salivary allergen rAed a 4 in the diagnosis of mosquito allergy. J Allergy Clin Immunol. 2005;115(suppl 2):S100.

    CrossRef  Google Scholar 

  102. Crisp HC, Johnson KS. Mosquito allergy. Ann Allergy Asthma Immunol. 2013;110:65–9.

    CrossRef  PubMed  Google Scholar 

  103. Mari A, Rasi C, Palazzo P, Scala E. Allergen databases: current status and perspectives. Curr Allergy Asthma Rep. 2009;9(5):376–383. The Allergome. http://www.allergome.org platform. Accessed 10 June 2016.

  104. Peng Z, Simons FER. Comparison of proteins, IgE, and IgG binding antigens, and skin reactivity in commercial and laboratory-made mosquito extracts. Ann Allergy Asthma Immunol. 1996;77:371–6.

    CrossRef  CAS  PubMed  Google Scholar 

  105. ImmunoCAP Allergen Information. Thermo Scientific website: http://www.phadia.com/en/products/allergy-testing-products/immunocap-allergen-information/insects/allergens/mosquito/. Accessed 6 June 2016.

  106. Reunala T, Brummer-Korvenkontio H, Palosuo K. Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int Arch Allergy Immunol. 1994;104:366–71.

    CrossRef  CAS  PubMed  Google Scholar 

  107. Peng Z, Rasic N, Liu Y, Simons FER. Mosquito saliva-specific IgE and IgG antibodies in 1059 blood donors. J Allergy Clin Immunol. 2002;110:816–7.

    CrossRef  PubMed  Google Scholar 

  108. Konishi E. Distribution of immunoglobulin G and E antibody levels to salivary gland extracts of Aedes albopictus (Diptera: Culicidae) in several age groups of a Japanese population. J Med Entomol. 1990;27:519–22.

    CrossRef  CAS  PubMed  Google Scholar 

  109. Simons FER, Peng Z. Mosquito allergy: recombinant mosquito salivary antigens for new diagnostic tests. Int Arch Allergy Immunol. 2001;124:403–5.

    CrossRef  CAS  PubMed  Google Scholar 

  110. Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, et al. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop. 2007;104:108–15.

    CrossRef  CAS  PubMed  Google Scholar 

  111. Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, et al. Human antibody response to Anopheles gambiae saliva: an immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg. 2010;83:115–21.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  112. Doucoure S, Mouchet F, Cournil A, Le Goff G, Cornelie S, Roca Y, et al. Human antibody response to Aedes aegypti saliva in an urban population in Bolivia: a new biomarker of exposure to dengue vector bites. Am J Trop Med Hyg. 2012;87:504–10.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  113. Heubeck E. Are you a mosquito magnet? WebMD. http://www.webmd.com/allergies/features/are-you-mosquito-magnet. Accessed 12 June 2016.

  114. Michael E, Ramaiah KD, Hoti SL, Barker G, Paul MR, Yuvaraj J, et al. Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J Trop Med Hyg. 2001;65:722–8.

    CrossRef  CAS  PubMed  Google Scholar 

  115. Fernández-Grandon GM, Gezan SA, Armour JAL, Pickett JA, Logan JG. Heritability of attractiveness to mosquitoes. PLoS One. 2015;10(4):e0122716. doi:10.1371/journal.pone.0122716. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122716

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  116. Carnevale P, Frézil JL, Bosseno MF, Le Pont F, Lancien J. The aggressiveness of Anopheles gambiae a in relation to the age and sex of the human subjects. Bull World Health Organ. 1978;56:147–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Smallegange RC, Verhulst NO, Takken W. Sweaty skin: an invitation to bite? Trends Parasitol. 2011;27:143–8.

    CrossRef  PubMed  Google Scholar 

  118. Port GR, Boreham PFL, Bryan JH. The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera, Culicidae). Bull Entomol Res. 1980;70:133–44.

    CrossRef  Google Scholar 

  119. Shirai Y, Funada H, Seki T, Morohashi M, Kamimura K. Landing preference of Aedes albopictus (Diptera: Culicidae) on human skin among ABO blood groups, secretors or nonsecretors, and ABH antigens. J Med Entomol. 2004;41:796–9.

    CrossRef  PubMed  Google Scholar 

  120. Lindsay S, Ansell J, Selman C, Cox V, Hamilton K, Walraven G. Effect of pregnancy on exposure to malaria mosquitoes. Lancet. 2000;355:1972.

    CrossRef  CAS  PubMed  Google Scholar 

  121. Shirai O, Tsuda T, Kitagawa S, Naitoh K, Seki T, Kamimura K, et al. Alcohol ingestion stimulates mosquito attraction. J Am Mosq Control Assoc. 2002;18:91–6.

    PubMed  Google Scholar 

  122. Lefèvre T, Gouagna L-C, Dabiré KR, Elguero E, Fontenille D, Renaud F, et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS One. 2010;5(3):e9546. doi:10.1371/journal.pone.0009546. PMID: 20209056

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  123. Enserink M. What mosquitoes want: secrets of host attraction. Science. 2002;298:90–2.

    CrossRef  CAS  PubMed  Google Scholar 

  124. Torr SJ, Della Torre A, Calzetta M, Costantini C, Vale GA. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and an. Quadriannulatus in the field. Med Vet Entomol. 2008;22(2):93–108.

    CrossRef  CAS  PubMed  Google Scholar 

  125. Williams CR, Ritchie SA, Russell RC, Eiras AE, Kline DL, Geier M. Geographic variation in attraction to human odor compounds by Aedes aegypti mosquitoes (Diptera: Culicidae): a laboratory study. J Chem Ecol. 2006;32(8):1625–34.

    CrossRef  CAS  PubMed  Google Scholar 

  126. Smallegange RC, Qiu YT, van Loon JJ, Takken W. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae Sensu stricto (Diptera: Culicidae). Chem Senses. 2005;30:145–52.

    CrossRef  CAS  PubMed  Google Scholar 

  127. Rajan TV, Hein M, Porte P, Wikel S. A double-blinded, placebo-controlled trial of garlic as a mosquito repellant: a preliminary study. Med Vet Entomol. 2005;19:84–9. PMID: 15752181

    CrossRef  CAS  PubMed  Google Scholar 

  128. Ives AR, Paskewitz SM. Testing vitamin B as a home remedy against mosquitoes. J Am Mosq Control Assoc. 2005;21:213–7. PMID: 16033124

    CrossRef  CAS  PubMed  Google Scholar 

  129. Logan JG, Birkett MA, Clark SJ, Powers S, Seal NJ, Wadhams LJ, et al. Identification of human-derived volatile chemicals that interfere with attraction of the Aedes aegypti mosquitoes. J Chem Ecol. 2008;34:308–22. doi:10.1007/s10886–008–9436-0. PMID: 18306972

    CrossRef  CAS  PubMed  Google Scholar 

  130. Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One. 2011;6:e28991. doi:10.1371/journal.pone.0028991.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  131. Centers for Disease Control and Prevention. Avoid mosquito bites. http://www.cdc.gov/features/stopmosquitoes/. Accessed 12 June 2016.

  132. CDC: Mosquito bite prevention for travelers fact sheet. http://www.cdc.gov/chikungunya/pdfs/fs_mosquito_bite_prevention_travelers.pdf. Accessed 12 June 2016.

  133. Consumer Reports: insect repellent buying guide: choosing an insect repellent that really works 2016 (May). http://www.consumerreports.org/cro/insect-repellent/buying-guide.htm. Accessed 10 June 2016.

  134. Elston DM. Prevention of arthropod-related disease. J Am Acad Dermatol. 2004;51:947–54.

    CrossRef  PubMed  Google Scholar 

  135. Logan JG, Stanczyk NM, Hassanali A, Kemei J, Santana AEG, Ribeiro KAL, et al. Arm-in-cage testing of natural human-derived mosquito repellents. Malar J. 2010;9:239. doi:10.1186/1475–2875–9-239. PMID: 20727149

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  136. Diaz JH. Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness Environ Med. 2016;27(1):153–63.

    CrossRef  PubMed  Google Scholar 

  137. ConsumerReports: insect repellent recommendations. http://www.consumerreports.org/cro/health/beauty-personal-care/insect-repellent/insect-repellent-recommendations/insect-repellent.htm. Accessed 12 June 2016.

  138. Reunala T, Brummer-Korvenkontio H, Karppinen A, et al. Treatment of mosquito bites with cetirizine. Clin Exp Allergy. 1993;23:72–5.

    CrossRef  CAS  PubMed  Google Scholar 

  139. Karppinen A, Kautiainen H, Petman L, Burri P, Reunala T. Comparison of cetirizine, ebastine and loratadine in the treatment of immediate mosquito-bite allergy. Allergy. 2002;57:534–7.

    CrossRef  CAS  PubMed  Google Scholar 

  140. Karppinen A, Kautiainen H, Reunala T, et al. Loratadine in the treatment of mosquito-bite-sensitive children. Allergy. 2000;55:668–71.

    CrossRef  CAS  PubMed  Google Scholar 

  141. Karppinen A, Brummer-Korvenkontio H, Petman L, et al. Levocetirizine for treatment of immediate and delayed mosquito bite reactions. Acta Derm Venereol. 2006;86:329–31.

    CrossRef  CAS  PubMed  Google Scholar 

  142. Karppinen A, Brummer-Korvenkontio H, Reunala T, Izquierdo I. Rupatadine 10 mg in the treatment of immediate mosquito-bite allergy. J Eur Acad Dermatol Venereol. 2012;26:919–22.

    CrossRef  CAS  PubMed  Google Scholar 

  143. Management of simple insect bites: where's the evidence? DTB (Drug and Therapeutics Board) 2012;50:45–48. doi:10.1136/dtb.2012.04.0099.

  144. Church MK. Efficacy and tolerability of rupatadine at four times the recommended dose against histamine and PAF induced flare responses and ex vivo platelet aggregation in healthy males. Br J Dermatol. 2010;163:1330–2.

    CrossRef  CAS  PubMed  Google Scholar 

  145. Ariano R, Panzani RC. Efficacy and safety of specific immunotherapy to mosquito bites. Eur Ann Allergy Clin Immunol. 2004;36:131–8.

    CAS  PubMed  Google Scholar 

  146. Tager A, Lass N, Gold D, Lengy J. Studies on Culex Pipiens Molestus in Israel. Int Arch Allergy. 1969;36:408–14.

    CrossRef  CAS  PubMed  Google Scholar 

  147. Benaim-Pinto C, Fassrainer A. Intradermal immunotherapy in children with severe skin inflammatory reactions to Aedes aegypti and Culex quinquefasciatus Mosquito bites. Int J Dermatol. 1990;29:600–1.

    CrossRef  CAS  PubMed  Google Scholar 

  148. Agarwal MK, Chaudhry S, Jhamb S, et al. Etiologic significance of mosquito (Anopheles Stephensi) in respiratory allergy in India. Ann Allergy Immunol. 1991;67:598–602.

    CAS  Google Scholar 

  149. Donovan MJ, Messmore AS, Scrafford DA, Sacks DL, Kamhawi S, et al. Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun. 2007;75:2523–30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kebaier C, Voza T, Vanderberg J. Neither mosquito saliva nor immunity to saliva has a detectable effect on the infectivity of plasmodium sporozoites injected into mice. Infect Immun. 2010;78:545–51.

    CrossRef  CAS  PubMed  Google Scholar 

  151. Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, et al. Prior exposure to uninfected mosquitoes enhances mortality in naturallytransmitted West Nile virus infection. PLoS One. 2007;2:e1171.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  152. Reagan KL, Machain-Williams C, Wang T, Blair CD. Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite. PLoS Negl Trop Dis. 2012;6(12):e1935. doi:10.1371/journal.pntd.0001935. Epub 2012 Dec 6

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ridolo E, Montagni M, Incorvaia C, Senna G, Passalacqua G. Orphan immunotherapies for allergic diseases. Ann Allergy Asthma Immunol. 2016;116:194–8.

    CrossRef  CAS  PubMed  Google Scholar 

  154. Singh S, Mann BK. Insect bite reactions. Indian J Dermatol Venereol Leprol. 2013;79:151–64. doi:10.4103/0378-6323.107629.

    CrossRef  PubMed  Google Scholar 

  155. Manrique MA, Gonzalez SN, Arias A, et al. Efficacy of immunotherapy with allergenic extract of Aedes aegypti in the treatment of large local reaction to mosquito bites in children. Ann Allergy Asthma Immunol. 2011;107:A106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata J. M. Engler M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engler, R.J.M., Crisp, H.C. (2017). Mosquito Hypersensitivity: Clinical Updates. In: Freeman, T., Tracy, J. (eds) Stinging Insect Allergy. Springer, Cham. https://doi.org/10.1007/978-3-319-46192-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46192-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46190-8

  • Online ISBN: 978-3-319-46192-2

  • eBook Packages: MedicineMedicine (R0)