Advertisement

Sources of Exposure to Nitrogen Oxides

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Human exposure to nitrate and nitrite comes from a variety of sources. Nitrate and nitrite are part of the human diet, present in drinking water, and nutrients in many vegetables as well as part of food preservation systems in cured meats. Thus, exposure is heavily dependent on geographic location and diet. Endogenously produced nitrate and nitrite are derived from nitric oxide metabolism and approximately 25 % of plasma nitrate is retained in the body via an enterosalivary pathway. The major source of nitrite and nitrate ingestion is from vegetables and enterosalivary recycling including oral reduction to nitrite by commensal bacteria.

Keywords

Dietary nitrate/nitrite Drinking water nitrite/nitrate Environmental nitrate/nitrite Salivary nitrate/nitrite Nitric oxide Cured meats Nitrite safety 

References

  1. 1.
    Ishiwata H, Tanimura A, Ishidate M. Nitrite and nitrate concentrations in human saliva collected from salivary ducts. J Food Hyg Soc Jpn. 1975;16:89–92.CrossRefGoogle Scholar
  2. 2.
    Moncada S, Palmer RMJ, Higgs A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43(2):109–42.PubMedGoogle Scholar
  3. 3.
    Abu-Soud HM, Yoho LL, Stuehr DJ. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. J Biol Chem. 1994;269(51):32047–50.PubMedGoogle Scholar
  4. 4.
    Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Maryuri T, Nuñez De González MT, Osburn WN, Hardin MD, Longnecker M, Garg HK, Bryan NS, Keeton JT. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail. J Food Sci. 2015;80(5):C942–9.CrossRefGoogle Scholar
  6. 6.
    Yoshida K, Kasama K, Kitabatake M, Imai M. Biotransformation of nitric oxide, nitrite and nitrate. Int Arch Occup Environ Health. 1983;52:103–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Grube R, Kelm M, Motz W, Strauer BE. The biology of nitric oxide. In: Moncada S, Feelisch M, Busse R, Higgs EA, editors. Enzymology, biochemistry, and immunology, vol. 4. London: Portland Press; 1994. p. 201–4.Google Scholar
  8. 8.
    Kelm M, Feelisch M, Grube R, Motz W, Strauer BE. The biology of nitric oxide. In: Moncada S, Marletta MA, Hibbs JB, Higgs EA, editors. Physiological and clinical aspects, vol. 1. London: Portland Press; 1992. p. 319–22.Google Scholar
  9. 9.
    Shiva S, Wang X, Ringwood LA, et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2006;2(9):486–93.CrossRefPubMedGoogle Scholar
  10. 10.
    Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999;1411:273–89.CrossRefPubMedGoogle Scholar
  11. 11.
    Tannenbaum SR. Nitrate and nitrite: origin in humans. Science. 1994;205:1333–5.Google Scholar
  12. 12.
    Kelm M, Yoshida K. Metabolic fate of nitric oxide and related N-oxides. In: Feelisch M, Stamler JS, editors. Methods in nitric oxide research. Chichester: Wiley; 1996. p. 47–58.Google Scholar
  13. 13.
    Bryan NS, Fernandez BO, Bauer SM, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol. 2005;1(5):290–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Rhodes P, Leone AM, Francis PL, Struthers AD, Moncada S. The L-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun. 1995;209:590–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Tannenbaum SR, Fett D, Young VR, Land PD, Bruce WR. Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science. 1978;200:1487–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Bryan NS, Rassaf T, Maloney RE, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004;101(12):4308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci U S A. 2003;100:336–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.CrossRefPubMedGoogle Scholar
  19. 19.
    Kleinbongard P, Dejam A, Lauer T, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Dejam A, Hunter CJ, Pelletier MM, et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood. 2005;106(2):734–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goaz PW, Biswell HA. Nitrite reduction in whole saliva. J Dent Res. 1961;40:355–65.CrossRefGoogle Scholar
  22. 22.
    Tannenbaum SR, Sinskey AJ, Weisman M, Bishop W. Nitrite in human saliva. Its possible relationship to nitrosamine formation. J Natl Cancer Inst. 1974;53:79–84.CrossRefPubMedGoogle Scholar
  23. 23.
    van Maanen JM, van Geel AA, Kleinjans JC. Modulation of nitrate-nitrite conversion in the oral cavity. Cancer Detect Prev. 1996;20(6):590–6.PubMedGoogle Scholar
  24. 24.
    Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37(3):395–400.CrossRefPubMedGoogle Scholar
  25. 25.
    Weitzberg E, Lundberg JO. Novel aspects of dietary nitrate and human health. Annu Rev Nutr. 2013;13:129–59.CrossRefGoogle Scholar
  26. 26.
    Walker R. The metabolism of dietary nitrites and nitrates. Biochem Soc Trans. 1996;24(3):780–5.CrossRefPubMedGoogle Scholar
  27. 27.
    McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut. 1994;40(2):211–4.CrossRefGoogle Scholar
  28. 28.
    Pique JM, Whittle BJ, Esplugues JV. The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation. Eur J Pharmacol. 1989;174(2–3):293–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Brown JF, Hanson PJ, Whittle BJ. Nitric oxide donors increase mucus gel thickness in rat stomach. Eur J Pharmacol. 1992;223(1):103–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Bjorne HH, Petersson J, Phillipson M, Weitzberg E, Holm L, Lundberg JO. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J Clin Invest. 2004;113(1):106–14.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35(11):1543–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Green LC, Ruiz de Luzuriaga K, Wagner DA, et al. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981;78(12):7764–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wennmalm A, Benthin G, Edlund A, et al. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res. 1993;73(6):1121–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Bednar C, Kies C. Nitrate and vitamin C from fruits and vegetables: impact of intake variations on nitrate and nitrite excretions in humans. Plant Foods Hum Nutr. 1994;45(1):71–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Weller R, Pattullo S, Smith L, Golden M, Ormerod A, Benjamin N. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol. 1996;107(3):327–31.CrossRefPubMedGoogle Scholar
  36. 36.
    National Academy of Sciences. The health effects of nitrate, nitrite and N-nitroso compounds. Washington, DC: National Academy Press; 1981.Google Scholar
  37. 37.
    National Academy of Sciences. Alternatives to the current use of nitrite in foods. Washington, DC: National Academy Press; 1982.Google Scholar
  38. 38.
    Program NT. Toxicology and carcinogenesis studies of sodium nitrite (CAS NO. 7632-00-0) in F344/N rats and B6C3F1 mice (drinking water studies). NIH publication no. 01-3954: National Institutes of Health; 2001. p. 7–273.Google Scholar
  39. 39.
    Nunez de Gonzalez MT, Osburn WN, Hardin MD, Longnecker M, Garg HK, Bryan NS, Keeton JT. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetable at retail. J Food Sci. 2015;80(5):C942–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Santamaria P, Elia A, Serio F, Todaro E. A survey of nitrate and oxalate content in fresh vegetables. J Sci Food Agric. 1999;79:1882–8.CrossRefGoogle Scholar
  41. 41.
    Salomez J, Hofman G. Nitrogen nutrition effects on nitrate accumulation of soil-grown Greenhouse Butterhead Lettuce. Soil Sci Plant Anal. 2009;40(1):620–32.CrossRefGoogle Scholar
  42. 42.
    Anjana SU, Iqbal M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agronomy. 2007;27(1):45–57.Google Scholar
  43. 43.
    Meah MN, Harrison N, Davies A. Nitrate and nitrite in foods and the diet. Food Addit Contam. 1994;11(4):519–32.CrossRefPubMedGoogle Scholar
  44. 44.
    White Jr JW. Relative significance of dietary sources of nitrate and nitrite. J Agric Food Chem. 1975;23(5):886–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Cross AJ, Ferrucci LM, Risch A, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70(6):2406–14.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169(6):562–71.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Honikel KO. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008;78:68–76.CrossRefPubMedGoogle Scholar
  48. 48.
    Sebranek JG, Fox JB. A review of nitrite and chloride chemistry: interactions and implications for cured meats. J Sci Food Agric. 1985;36:1169–82.CrossRefGoogle Scholar
  49. 49.
    Cassens RG. Use of sodium nitrite in cured meats today. Food Technol. 1995;49:72–81.Google Scholar
  50. 50.
    Cassens RG. Residual nitrite in cured meat. Food Technol. 1997;51:53–5.Google Scholar
  51. 51.
    Cassens RG. Composition and safety of cured meats in the USA. Food Chem. 1997;59:561–6.CrossRefGoogle Scholar
  52. 52.
    Nuñez De González MT, Osburn WN, Hardin MD, Longnecker M, Garg HK, Bryan NS, Keeton JT. Survey of residual nitrite and nitrate in conventional and organic/natural/uncured/indirectly cured meats available at retail in the United States. J Agric Food Chem. 2012;60(15):3981–90.CrossRefPubMedGoogle Scholar
  53. 53.
    Temme EH, Vandevijvere S, Vinkx C, Huybrechts I, Goeyens L, Van Oyen H. Average daily nitrate and nitrite intake in the Belgian population older than 15 years. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(9):1193–204.CrossRefPubMedGoogle Scholar
  54. 54.
    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.CrossRefPubMedGoogle Scholar
  55. 55.
    FSA. UK Monitoring programme for nitrate in lettuce and spinach. Food Survey Information Sheet 74/05; 2004.Google Scholar
  56. 56.
    Sebranek JG, Bacus JN. Cured meat products without direct addition of nitrate or nitrite: what are the issues? Meat Sci. 2007;77(1):136–47.CrossRefPubMedGoogle Scholar
  57. 57.
    FSA. Survey of nitrite and nitrate in bacon and cured meat products. Food Surveillance Information Sheet No. 142, London; 1998.Google Scholar
  58. 58.
    IARC, editor. Ingested nitrate and nitrite and cyanobacterial peptide toxins. Lyon: IARC Press; 2010.Google Scholar
  59. 59.
    FSA. Total diet study, nitrate and nitrite. Food Surveillance Information Sheet No. 163, London; 1998.Google Scholar
  60. 60.
    World Health Organization. Nitrate and nitrite. Geneva: World Health Organization; 2007.Google Scholar
  61. 61.
    Jakszyn PG, Ibanez R, Pera G, Agudo A, García-Closas R, Amiano P, González CA. Food content of potential carcinogens. European prospective investigation on cancer report. Barcelona; 2004.Google Scholar
  62. 62.
    EPA US EPA. Technical fact sheet on nitrate/nitrite.Google Scholar
  63. 63.
    EPA US EPA. EPA community water regulations handbook; 2010. www.epa.gov/sites/production/files/documents/EnvRegSC_Hndbk.pdf.
  64. 64.
    EPA US EPA. Listing of local drinking water contaminant results. http://www.epa.gov/ccr, http://www3.epa.gov/storet/dbtop.html.
  65. 65.
    World Health Organization. Guidelines for drinking water quality. 4th ed; 2011. p. 398–403. http://www.who.int/water_sanitation_health/publications/dwq_guidelines/en/.
  66. 66.
    Food Nutrition Board, National Academy of Sciences. Institute of Medicine dietary reference intakes: water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press; 2004.Google Scholar
  67. 67.
  68. 68.
    van Grinsven HJ, Ward MH, Benjamin N, de Kok TM. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water? Environ Health. 2006;5:26.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999;34(5):646–56.CrossRefPubMedGoogle Scholar
  70. 70.
    Cornblath M, Hartmann AF. Methhemoglobinaemia in young infants. J Pediatr. 1948;33:421–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Kortboyer J, Olling M, Zeilmaker MJ. The oral bioavailability of sodium nitrite investigated in healthy adult volunteers. Bilthoven: National Institute of Public Health and the Environment; 1997.Google Scholar
  72. 72.
    Dejam A, Hunter CJ, Tremonti C, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116(16):1821–31.CrossRefPubMedGoogle Scholar
  73. 73.
    L’Hirondel JL, Avery AA, Addiscott T. Dietary nitrate: where is the risk? Environ Health Perspect. 2006;114(8):A458–9; author reply A459–61.Google Scholar
  74. 74.
    Powlson DS, Addiscott TM, Benjamin N, et al. When does nitrate become a risk for humans? J Environ Qual. 2008;37(2):291–5.CrossRefPubMedGoogle Scholar
  75. 75.
    McKnight GM, Duncan CW, Leifert C, Golden MH. Dietary nitrate in man: friend or foe? Br J Nutr. 1999;81(5):349–58.CrossRefPubMedGoogle Scholar
  76. 76.
    L’Hirondel JL. Nitrate and man: toxic, harmless or beneficial? Wallingford: CABI Publishing; 2001.CrossRefGoogle Scholar
  77. 77.
    EFS Authority. Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008;289:1–79.Google Scholar
  78. 78.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(8):156–67.CrossRefPubMedGoogle Scholar
  79. 79.
    Qin L, Liu X, Sun Q, Fan Z, et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci U S A. 2012;109(33):13434–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Eisenbrand G, Spiegelhalder B, Preussmann R. Nitrate and nitrite in saliva. Oncology. 1980;37(4):227–31.CrossRefPubMedGoogle Scholar
  81. 81.
    Tannenbaum SR, Weisman M, Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol. 1976;14(6):549–52.CrossRefPubMedGoogle Scholar
  82. 82.
    Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One. 2014;9(3), e88645.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hezel MP, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21(1):7–16.CrossRefPubMedGoogle Scholar
  84. 84.
    Bondonno CP, Liu AH, Croft KD, Considine MJ, et al. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am J Hypertens. 2015;28(5):572–5.CrossRefPubMedGoogle Scholar
  85. 85.
    Xia D, Deng D, Wang S. Alterations of nitrate and nitrite content in saliva, serum, and urine in patients with salivary dysfunction. J Oral Pathol Med. 2003;32(2):95–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.CrossRefPubMedGoogle Scholar
  87. 87.
    World Resources Institute. World resources 1994–95: a guide to the global environment. New York: Oxford University Press; 1994.Google Scholar
  88. 88.
    US EPA National trends in nitrogen dioxide levels 2014. http://www3.epa.gov/airtrends/nitrogen.html. Accessed 28 Dec 2015.
  89. 89.
    Lightning and atmospheric chemistry: the rate of atmospheric NO production. In: Volland H, editor. Handbook of atmospheric dynamics, No. 1. Boca Raton: CRC Press; 1995.Google Scholar
  90. 90.
    Al-Dabbagh S, Forman D, Bryson D, Stratton I, Doll R. Mortality of nitrate fertiliser workers. Br J Ind Med. 1986;43(8):507–15.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Fandrem SI, Kjuus H, Andersen A, Amlie E. Incidence of cancer among workers in a Norwegian nitrate fertiliser plant. Br J Ind Med. 1993;50(7):647–52.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Addiscott TM. Fertilizers and nitrate leaching. Issues Environ Sci Technol. 1996;5:1–26.CrossRefGoogle Scholar
  93. 93.
    Miller P, Saeman WC. Properties of monocrystalline ammonium nitrate. Fertilizer Ind Eng Chem. 1948;40:154–9.CrossRefGoogle Scholar
  94. 94.
    European Fertilizer Manufacturers Association. Production of ammonium nitrate and calcium ammonium nitrate. Brussels: EFMA; 2000.Google Scholar
  95. 95.
    World Health Organization. Environmental health criteria 4: oxides of nitrogen. Geneva: WHO; 1977.Google Scholar
  96. 96.
    Anderson HR, Spix C, Medina S, et al. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J. 1997;10(5):1064–71.CrossRefPubMedGoogle Scholar
  97. 97.
    Hoffmann D, Rivenson A, Hecht SS. The biological significance of tobacco-specific N-nitrosamines: smoking and adenocarcinoma of the lung. Crit Rev Toxicol. 1996;26(2):199–211.CrossRefPubMedGoogle Scholar
  98. 98.
    Jenkins RA, Gill BE. Determination of oxides of nitrogen (NOx) in cigarette smoke by chemiluminescent analysis. Anal Chem. 1980;52:925–8.CrossRefGoogle Scholar
  99. 99.
    Lofroth G, Burton RM, Forehand L, Hammond SK, Seila RL, Zweidinger RB, Lewtas J. Characterization of environmental tobacco smoke. Environ Sci Technol. 1989;23:610–4.CrossRefGoogle Scholar
  100. 100.
    Norman V, Keith CG. Nitrogen oxides in tobacco smoke. Nature. 1965;205:915–6.CrossRefGoogle Scholar
  101. 101.
    Cueto R, Pryor W. A cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy. Vibrat Spectrosc. 1994;7:97–111.CrossRefGoogle Scholar
  102. 102.
    Manochehr-Pour M, Bhat M, Bissada N. Clinical evaluation of two potassium nitrate toothpastes for the treatment of dental hypersensitivity. Periodontal Case Rep. 1984;6(1):25–30.PubMedGoogle Scholar
  103. 103.
    Orchardson R, Gillam DG. The efficacy of potassium salts as agents for treating dentin hypersensitivity. J Orofac Pain. 2000;14(1):9–19.PubMedGoogle Scholar
  104. 104.
    Poulsen S, Errboe M, Hovgaard O, Worthington HW. Potassium nitrate toothpaste for dentine hypersensitivity. Cochrane Database Syst Rev. 2001;(2):CD001476.Google Scholar
  105. 105.
    Wara-Aswapati N, Krongnawakul D, Jiraviboon D, Adulyanon S, Karimbux N, Pitiphat W. The effect of a new toothpaste containing potassium nitrate and triclosan on gingival health, plaque formation and dentine hypersensitivity. J Clin Periodontol. 2005;32(1):53–8.CrossRefPubMedGoogle Scholar
  106. 106.
    Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976;14(6):545–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Magee PN, Barnes JM. The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer. 1956;10(1):114–22.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Fan TY, Tannenbaum SR. Natural inhibitors of nitrosation reactions: the concept of available nitrite. J Food Sci. 1973;38(6):1067–9.CrossRefGoogle Scholar
  109. 109.
    Fiddler W, Pensabene JW, Piotrowski EG, Doerr RC, Wasserman AE. Use of sodium ascorbate or erythorbate to inhibit formation of N-nitrosodimethlyamine in frankfurters. J Food Sci. 1973;38(6):1084.CrossRefGoogle Scholar
  110. 110.
    Mirvish SS. Blocking the formation of N-nitroso compounds with ascorbic acid in vitro and in vivo. Ann N Y Acad Sci. 1975;258:175–80.CrossRefPubMedGoogle Scholar
  111. 111.
    Mirvish SS. Inhibition by vitamins C and E of in vivo nitrosation and vitamin C occurrence in the stomach. Eur J Cancer Prev. 1996;5 Suppl 1:131–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Animal Sciences, Meat Science and Muscle BiologyUniversity of Wisconsin—MadisonMadisonUSA

Personalised recommendations