Advertisement

Nitrate-Reducing Oral Bacteria: Linking Oral and Systemic Health

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

There is now an established role for oral nitrate-reducing bacteria in the maintenance of endogenous nitric oxide production in humans. Inorganic nitrate, primarily from green leafy vegetables, is taken up in the proximal gut and concentrated in salivary glands. Upon salivation, nitrate is reduced by specific and selective nitrate-reducing bacteria to nitrite. Nitrite-enriched saliva when swallowed generates nitric oxide gas in the lumen of the stomach due to acid disproportionation of nitrite. This nitrate–nitrite–nitric oxide pathway is a redundant NO-generating system that can, perhaps, compensate for loss of enzymatic NO production from NOS. This chapter will highlight the importance of oral bacteria in this pathway and future therapeutic strategies aimed at repleting NO production.

Keywords

Denitrifying bacteria Dietary nitrate Nitrite Periodontitis Hypertension Stomach acid 

References

  1. 1.
    Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013;109 Suppl 2:S21–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(8):156–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.CrossRefPubMedGoogle Scholar
  4. 4.
    Bryan NS, editor. Food, nutrition and the nitric oxide pathway: biochemistry and bioactivity. Lancaster: DesTech Publishing; 2009.Google Scholar
  5. 5.
    Bryan NS, Loscalzo J, editors. Nitrite and nitrate in human health and disease. New York: Humana Press; 2011.Google Scholar
  6. 6.
    Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol. 2005;1(5):290–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1(8):804–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35(11):1543–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, et al. Stomach NO synthesis. Nature. 1994;368(6471):502.CrossRefPubMedGoogle Scholar
  10. 10.
    Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.CrossRefPubMedGoogle Scholar
  12. 12.
    Angelo M, Singel DJ, Stamler JS. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci U S A. 2006;103(22):8366–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tannenbaum SR, Sinskey AJ, Weisman M, Bishop W. Nitrite in human saliva. Its possible relationship to nitrosamine formation. J Natl Cancer Inst. 1974;53(1):79–84.CrossRefPubMedGoogle Scholar
  14. 14.
    van Maanen JM, van Geel AA, Kleinjans JC. Modulation of nitrate-nitrite conversion in the oral cavity. Cancer Detect Prev. 1996;20(6):590–6.PubMedGoogle Scholar
  15. 15.
    Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1(6):546–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37(3):395–400.CrossRefPubMedGoogle Scholar
  17. 17.
    Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976;14(6):545–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190(1):48–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med. 2008;45(4):468–74.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carlstrom M, Larsen FJ, Nystrom T, Hezel M, Borniquel S, Weitzberg E, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A. 2010;107(41):17716–20.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. [Research Support, Non-U.S. Gov’t]. 2011;89(3):574–85.Google Scholar
  24. 24.
    Petersson J, Carlstrom M, Schreiber O, Phillipson M, Christoffersson G, Jagare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46(8):1068–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101:13683–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, et al. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation. 2012;126(16):1983–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2013;55:93–100.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004;101(12):4308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Walters CL, Casselden RJ, Taylor AM. Nitrite metabolism by skeletal muscle mitochondria in relation to haem pigments. Biochim Biophys Acta. 1967;143(2):310–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Kozlov AV, Staniek K, Nohl H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 1999;454(1–2):127–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9(12):1498–505.CrossRefPubMedGoogle Scholar
  32. 32.
    Li H, Samouilov A, Liu X, Zweier JL. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem. 2004;279(17):16939–46.CrossRefPubMedGoogle Scholar
  33. 33.
    Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115(5):1232–40.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293(12):1477–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado R, et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004;10:1122–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Hardwick JB, Tucker AT, Wilks M, Johnston A, Benjamin N. A novel method for the delivery of nitric oxide therapy to the skin of human subjects using a semi-permeable membrane. Clin Sci (Lond). 2001;100(4):395–400.CrossRefGoogle Scholar
  37. 37.
    Bjorne HH, Petersson J, Phillipson M, Weitzberg E, Holm L, Lundberg JO. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J Clin Invest. 2004;113(1):106–14.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tsuchiya K, Kanematsu Y, Yoshizumi M, Ohnishi H, Kirima K, Izawa Y, et al. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol. 2005;288(5):H2163–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Kleinbongard P, Dejam A, Lauer T, Jax T, Kerber S, Gharini P, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.CrossRefPubMedGoogle Scholar
  40. 40.
    Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2012;55C:93–100.Google Scholar
  42. 42.
    Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci. 2009;14:1–18.CrossRefGoogle Scholar
  43. 43.
    Bum EN, Schmutz M, Meyer C, Rakotonirina A, Bopelet M, Portet C, et al. Anticonvulsant properties of the methanolic extract of Cyperus articulatus (Cyperaceae). J Ethnopharmacol. 2001;76(2):145–50.CrossRefPubMedGoogle Scholar
  44. 44.
    Doel J, Benjamin N, Hector M, Rogers M, Allaker R. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci. 2005;113:14–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One. 2014;9(3), e88645.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Qin L, Liu X, Sun Q, Fan Z, Xia D, Ding G, et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci U S A. 2012;109(33):13434–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–87.CrossRefPubMedGoogle Scholar
  48. 48.
    Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.CrossRefPubMedGoogle Scholar
  49. 49.
    Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19(4):333–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Bryan NS, Torregrossa AC, Mian AI, Berkson DL, Westby CM, Moncrief JW. Acute effects of hemodialysis on nitrite and nitrate: potential cardiovascular implications in dialysis patients. Free Radic Biol Med. 2013;58:46–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.CrossRefPubMedGoogle Scholar
  52. 52.
    Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, et al. Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic Biol Med. 2014;77:249–57.CrossRefPubMedGoogle Scholar
  53. 53.
    Takeshita T, Suzuki N, Nakano Y, Shimazaki Y, Yoneda M, Hirofuji T, et al. Relationship between oral malodor and the global composition of indigenous bacterial populations in saliva. Appl Environ Microbiol. 2010;76(9):2806–14.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen C, Wang T, Chen W. Occurrence of Aggregatibacter actinomycetemcomitans serotypes in subgingival plaque from United States subjects. Mol Oral Microbiol. 2010;25(3):207–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Reddy D, Lancaster Jr JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science. 1983;221(4612):769–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Allaker RP, Silva Mendez LS, Hardie JM, Benjamin N. Antimicrobial effect of acidified nitrite on periodontal bacteria. Oral Microbiol Immunol. 2001;16(4):253–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Torregrossa AC, Aranke M, Bryan NS. Nitric oxide and geriatrics: implications in diagnostics and treatment of the elderly. J Geriatr Cardiol. 2011;8:230–42.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Joshipura K, Ritchie C, Douglass C. Strength of evidence linking oral conditions and systemic disease. Compend Contin Educ Dent Suppl. 2000;30:12–23; quiz 65.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Virolology & MicrobiologyBaylor College of MedicineHoustonUSA

Personalised recommendations