Looking Forward

Part of the Nutrition and Health book series (NH)


Advancements in science and research over the past 30 years have illuminated the essential nature of nitrite and nitrate in our food supply. The previous chapters have highlighted the historical journey of nitrite and nitrate from vilified food additives that possibly cause cancer to being recognized as essential nutrients with medicinal properties via restoration of nitric oxide homeostasis. However, there is still much to be learned about nitrite and nitrate in human health and disease. As we continue to advance the field, there are fundamental questions that remain. Optimal ranges of intake will need to be established through dietary guidelines to maximize the benefits while mitigating any potential risks of overexposure to these naturally occurring anions. This information will allow for future research using safe and effective doses of nitrite and nitrate in long-term clinical trials to effectively test their roles in disease prevention or treatment. This chapter will illustrate how we see the field evolving in the next 20 years


Safety Dietary guidelines Hypertension Prevention 


  1. 1.
    L’Hirondel JL. Nitrate and man: toxic, harmless or beneficial? Wallingford: CABI; 2001.CrossRefGoogle Scholar
  2. 2.
    Moncada S, Higgs A. the L-Arginine-Nitric Oxide Pathway N Engl J Med. 1993 Dec 30;329(27):2002-12.Google Scholar
  3. 3.
    Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295(1):58–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, et al. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283(49):33927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Rad Biol Med. 2003;35(7):790–6.CrossRefPubMedGoogle Scholar
  7. 7.
    McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut. 1997;40(2):211–4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dejam A, Hunter CJ, Schechter AN, Gladwin MT. Emerging role of nitrite in human biology. Blood Cells Mol Dis. 2004;32(3):423–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005;1(6):308–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nature Chem Biol. 2005;1(5):290–7.CrossRefGoogle Scholar
  11. 11.
    Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38(2):274–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Egashira K, Inou T, Hirooka Y, Kai H, Sugimachi M, Suzuki S, et al. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation. 1993;88(1):77–81.CrossRefPubMedGoogle Scholar
  13. 13.
    Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerhard M, Roddy MA, Creager SJ, Creager MA. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension. 1996;27(4):849–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561(Pt 1):1–25.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ignarro LJ, Balestrieri ML, Napoli C. Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res. 2007;73(2):326–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Lauer T, Heiss C, Balzer J, Kehmeier E, Mangold S, Leyendecker T, et al. Age-dependent endothelial dysfunction is associated with failure to increase plasma nitrite in response to exercise. Basic Res Cardiol. 2008;103(3):291–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Allen JD, Miller EM, Schwark E, Robbins JL, Duscha BD, Annex BH. Plasma nitrite response and arterial reactivity differentiate vascular health and performance. Nitric Oxide. 2009;20(4):231–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rassaf T, Lauer T, Heiss C, Balzer J, Mangold S, Leyendecker T, et al. Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br J Sports Med. 2007;41(10):669–73; discussion 73.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kleinbongard P, Dejam A, Lauer T, Jax T, Kerber S, Gharini P, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.CrossRefPubMedGoogle Scholar
  21. 21.
    Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf). 2007;191(1):59–66.CrossRefGoogle Scholar
  22. 22.
    Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48(2):342–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Stokes KY, Dugas TR, Tang Y, Garg H, Guidry E, Bryan NS. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296(5):H1281–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med. 2008;45(4):468–74.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shiva S, Sack MN, Greer JJ, Duranski MR, Ringwood LA, Burwell L, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007;204(9):2089–102.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    DeVan AE, Johnson LC, Brooks FA, Evans TD, Justice JN, Cruickshank-Quinn C, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol. 1985;120(4):416–25.CrossRefGoogle Scholar
  29. 29.
    Justice JN, Gioscia-Ryan RA, Johnson LC, Battson ML, de Picciotto NE, Beck HJ, et al. Sodium nitrite supplementation improves motor function and skeletal muscle inflammatory profile in old male mice. J Appl Physiol. 2015;118(2):163–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Zand J, Lanza F, Garg HK, Bryan NS. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res. 2011;31(4):262–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Nagamani SC, Campeau PM, Shchelochkov OA, Premkumar MH, Guse K, Brunetti-Pierri N, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Houston M, Hays L. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):524–9.Google Scholar
  33. 33.
    Biswas OS, Gonzalez VR, Schwarz ER. Effects of an oral nitric oxide supplement on functional capacity and blood pressure in adults with prehypertension. J Cardiovasc Pharmacol Ther. 2014;20(1):52–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee J, Kim HT, Solares GJ, Kim K, Ding Z, Ivy JL. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36(2):107–12.PubMedGoogle Scholar
  35. 35.
    Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.CrossRefPubMedGoogle Scholar
  37. 37.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nunez de Gonzalez MT, Osburn WN, Hardin MD, Longnecker M, Garg HK, Bryan NS, et al. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail. J Food Sci. 2015;80(5):C942–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Cosby K, Partovi KS, Crawford JH, Patel RK, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.CrossRefPubMedGoogle Scholar
  40. 40.
    Huang Z, Shiva S, Kim-Shapiro DB, Patel RP, Ringwood LA, Irby CE, et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest. 2005;115(8):2099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008;105(29):10256–61.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Feelisch M, Martin JF. The early role of nitric oxide in evolution. Trends Ecol Evol. 1995;10(12):496–9.CrossRefPubMedGoogle Scholar
  43. 43.
    World Health Organization. Report on diet, nutrition and the prevention of chronic diseases; 2003.Google Scholar
  44. 44.
    Karl JM, Alaverdashvili M, Cross AR, Whishaw IQ. Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience. 2010;170(1):123–37.CrossRefPubMedGoogle Scholar
  45. 45.
    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Hord NG, Ghannam JS, Garg HK, Berens PD, Bryan NS. Nitrate and nitrite content of human, formula, bovine and soy milks: implications for dietary nitrite and nitrate recommendations. Breastfeed Med. 2011;6(6):393–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Heinig MJ. The American Academy of Pediatrics recommendations on breastfeeding and the use of human milk. J Hum Lact. 1998;14(1):2–3.CrossRefPubMedGoogle Scholar
  49. 49.
    Gartner LM, Morton J, Lawrence RA, Naylor AJ, O’Hare D, Schanler RJ, et al. Breastfeeding and the use of human milk. Pediatrics. 2005;115(2):496–506.CrossRefPubMedGoogle Scholar
  50. 50.
    Hoddinott P, Tappin D, Wright C. Breast feeding. BMJ. 2008;336(7649):881–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    James DC, Lessen R. Position of the American Dietetic Association: promoting and supporting breastfeeding. J Am Dietetic Assoc. 2009;109(11):1926–42.CrossRefGoogle Scholar
  52. 52.
    Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evidence Report/Technology Assessment. Rockville: Tufts-New England Medical Center Evidence-Based Practice Center, under Contract No. 290-02-00222007 Contract No.: 07-E007.Google Scholar
  53. 53.
    Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, Shinozaki M. Non-enzymatic nitric oxide generation in the stomachs of breastfed neonates. Acta Paediatr. 1999;88(10):1053–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Ohta N, Tsukahara H, Ohshima Y, Nishii M, Ogawa Y, Sekine K, et al. Nitric oxide metabolites and adrenomedullin in human breast milk. Early Hum Dev. 2004;78(1):61–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Cekmen MB, Balat A, Balat O, Aksoy F, Yurekli M, Erbagci AB, et al. Decreased adrenomedullin and total nitrite levels in breast milk of preeclamptic women. Clin Biochem. 2004;37(2):146–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Department of MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations