Advertisement

The Nitrate–Nitrite–Nitric Oxide Pathway in Traditional Herbal Medicine and Dietary Supplements with Potential Benefits for Cardiovascular Diseases

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

For thousands of years, herbal medicine has been serving as a major health care tool for disease prevention and treatment. Many of the traditional medicines with cardiovascular benefits exert nitric oxide (NO)-related effects on tissues and organs with diseases. The herbals containing nitrogen-metabolizing enzymes that convert inorganic nitrite and nitrate into NO have been reported widely as alternative sources of NO production independent of the enzymatic synthesis of NO from l-arginine. The nitrate–nitrite–NO pathway in plants and animals offers a new avenue which may define the biological action as well as assess the safety of certain herbal medicines commonly used for the treatment of cardiovascular disease. In this chapter, the production of nitrate, nitrite, and NO, and molecular basis of their biological action will be discussed. Evidence will be presented to support the notion that the nitrite, nitrate, and reductase activity ingested in herbal medicines constitute a robust and natural system for NO generation to overcome pathological conditions associated with NO insufficiency and combat cardiovascular disease.

Keywords

Nitrate Nitrite Nitric oxide Alternative Medicine Dietary supplements Herb Heart diseases 

References

  1. 1.
    Davidson P, Hancock K, Leung D, Ang E, Chang E, Thompson DR, et al. Traditional Chinese Medicine and heart disease: what does Western medicine and nursing science know about it? Eur J Cardiovasc Nurs. 2003;2(3):171–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol. 1997;54(1):1–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol. 1996;23(8):728–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Lundberg JO, Weitzberg E. NO generation from inorganic nitrate and nitrite: role in physiology, nutrition and therapeutics. Arch Pharm Res. 2009;32(8):1119–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun. 2010;396(1):39–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Garg HK, Bryan NS. Dietary sources of nitrite as a modulator of ischemia/reperfusion injury. Kidney Int. 2009;75(11):1140–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Koshland Jr DE. The molecule of the year. Science. 1992;258(5090):1861.CrossRefPubMedGoogle Scholar
  10. 10.
    Griffith TM, Edwards DH, Davies RL, Harrison TJ, Evans KT. EDRF coordinates the behaviour of vascular resistance vessels. Nature. 1987;329(6138):442–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A. 2007;104(45):17593–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lundberg JO. Cardiovascular prevention by dietary nitrate and nitrite. Am J Physiol Heart Circ Physiol. 2009;296(5):H1221–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Lundberg JO, Weitzberg E. Nitrite reduction to nitric oxide in the vasculature. Am J Physiol Heart Circ Physiol. 2008;295(2):H477–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, et al. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett. 1996;398(2–3):159–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Ribeiro Jr EA, Cunha FQ, Tamashiro WM, Martins IS. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett. 1999;445(2–3):283–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Walker FA, Ribeiro JM, Montfort WR. Novel nitric oxide-liberating heme proteins from the saliva of bloodsucking insects. Met Ions Biol Syst. 1999;36:621–63.PubMedGoogle Scholar
  17. 17.
    Ninnemann H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol. 1996;64(2):393–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quillere I, Leydecker MT, Kaiser WM, et al. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta. 2002;215(5):708–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot. 2002;53(366):103–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, et al. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283(49):33927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tang Y, Garg H, Geng YJ, Bryan NS. Nitric oxide bioactivity of traditional Chinese medicines used for cardiovascular indications. Free Radic Biol Med. 2009;47(6):835–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamada K, Suzuki E, Nakaki T, Watanabe S, Kanba S. Aconiti tuber increases plasma nitrite and nitrate levels in humans. J Ethnopharmacol. 2005;96(1–2):165–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Geng YJ, Petersson AS, Wennmalm A, Hansson GK. Cytokine-induced expression of nitric oxide synthase results in nitrosylation of heme and nonheme iron proteins in vascular smooth muscle cells. Exp Cell Res. 1994;214(1):418–28.CrossRefPubMedGoogle Scholar
  24. 24.
    Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A. 1992;89(16):7674–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, et al. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci U S A. 1992;89(17):8087–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89(1):444–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Janero DR, Bryan NS, Saijo F, Dhawan V, Schwalb DJ, Warren MC, et al. Differential nitros(yl)ation of blood and tissue constituents during glyceryl trinitrate biotransformation in vivo. Proc Natl Acad Sci U S A. 2004;101(48):16958–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29(5):683–741.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.CrossRefPubMedGoogle Scholar
  30. 30.
    Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med. 2008;45(4):468–74.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med. 2007;43(5):645–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res. 2008;103(9):957–64.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Kapil V, Webb AJ, Ahluwalia A. Inorganic nitrate and the cardiovascular system. Heart. 2010;96(21):1703–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Lundberg JO. Nitric oxide metabolites and cardiovascular disease markers, mediators, or both? J Am Coll Cardiol. 2006;47(3):580–1.CrossRefPubMedGoogle Scholar
  38. 38.
    Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37(3):395–400.CrossRefPubMedGoogle Scholar
  39. 39.
    Stokes KY, Dugas TR, Tang Y, Garg H, Guidry E, Bryan NS. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296(5):H1281–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101:13683–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Milkowski A, Garg HK, Coughlin JR, Bryan NS. Nutritional epidemiology in the context of nitric oxide biology: a risk-benefit evaluation for dietary nitrite and nitrate. Nitric Oxide. 2010;22(2):110–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu X, Ma H, Li C, Cui Q, Guo Y, Wang L, et al. Sixty-one cases of angina pectoris due to coronary heart disease treated by external use of the paste of nitrum and realgar powder on zhiyang (GV 9). J Tradit Chin Med. 2002;22(4):243–6.PubMedGoogle Scholar
  43. 43.
    Lam FF, Yeung JH, Chan KM, Or PM. Mechanisms of the dilator action of cryptotanshinone on rat coronary artery. Eur J Pharmacol. 2008;578(2–3):253–60.CrossRefPubMedGoogle Scholar
  44. 44.
    Lam FY, Ng SC, Cheung JH, Yeung JH. Mechanisms of the vasorelaxant effect of Danshen (Salvia miltiorrhiza) in rat knee joints. J Ethnopharmacol. 2006;104(3):336–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol. 2005;45(12):1345–59.CrossRefPubMedGoogle Scholar
  46. 46.
    Li MH, Chen JM, Peng Y, Wu Q, Xiao PG. Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol. 2008;120(3):419–26.CrossRefPubMedGoogle Scholar
  47. 47.
    Li W, Li ZW, Han JP, Li XX, Gao J, Liu CX. Determination and pharmacokinetics of danshensu in rat plasma after oral administration of danshen extract using liquid chromatography/tandem mass spectrometry. Eur J Drug Metab Pharmacokinet. 2008;33(1):9–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Li YH, Sun XP, Zhang YQ, Wang NS. The antithrombotic effect of borneol related to its anticoagulant property. Am J Chin Med. 2008;36(4):719–27.CrossRefPubMedGoogle Scholar
  49. 49.
    Li XD, Yang YJ, Geng YJ, Jin C, Hu FH, Zhao JL, et al. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway. Am J Physiol Heart Circ Physiol. 2010;299(4):H1255–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Olden K, Guthrie J. Genomics: implications for toxicology. Mutat Res. 2001;473(1):3–10.CrossRefPubMedGoogle Scholar
  51. 51.
    Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48(2):342–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Tsuchiya K, Kanematsu Y, Yoshizumi M, Ohnishi H, Kirima K, Izawa Y, et al. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol. 2005;288(5):H2163–70.CrossRefPubMedGoogle Scholar
  53. 53.
    Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131(4):371–80, discussion 380.CrossRefPubMedGoogle Scholar
  54. 54.
    Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide. 2012;26(4):229–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Center for Cardiovascular Biology and Atherosclerosis ResearchUniversity of Texas McGovern School of Medicine at HoustonHoustonUSA

Personalised recommendations