Nitric Oxide Signaling in Health and Disease

  • Nathan S. Bryan
  • Jack R. LancasterJr.
Part of the Nutrition and Health book series (NH)


Nitric oxide has become one of the most studied molecules in medical history. Almost 30 years after the discovery of endothelium-derived relaxing factor as nitric oxide, there are now over 150,000 published papers on the chemistry and biology of nitric oxide. Over the past 30 years, we have learned much more about the production and regulation of NO as a ubiquitous signaling molecule in humans and other life forms. The first signaling pathway discovered from the oxidation of l-arginine and subsequent activation of soluble guanylyl cyclase by NO may only represent a fraction of the biological effects of NO. Understanding all the signaling aspects of NO will allow for better development of diagnostics and therapeutics.


Soluble guanylyl cyclase Cyclic GMP Nitrite Nitrate Heme iron nitric oxide synthase EDRF Nitric oxide synthase l-arginine Nitrosothiols Inflammation Free radical 


  1. 1.
    Wagner D, Tannenbaum S. Enhancement of nitrate biosynthesis by Escherichia coli lipopolysaccharide. In: Magee PN, editor. Nitrosamines and human cancer. New York: Cold Spring Harbor Press; 1982. p. 437–43.Google Scholar
  2. 2.
    Hegesh E, Shiloah J. Blood nitrates and infantile methemoglobinemia. Clin Chim Acta. 1982;125(2):107–15.CrossRefPubMedGoogle Scholar
  3. 3.
    Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985;82(22):7738–42.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hibbs Jr JB, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987;235(4787):473–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988;27(24):8706–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A. 1977;74(8):3203–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetycholine. Nature. 1980 27 nov 1980;288(5789):373-6.Google Scholar
  9. 9.
    Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 11 June 1987;327(6122):524-6.Google Scholar
  10. 10.
    Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988;336(6197):385–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry. 2010;49(5):835–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hill BG, Dranka BP, Bailey SM, Lancaster Jr JR, Darley-Usmar VM. What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem. 2010;285(26):19699–704.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Fernandes D, Assreuy J. Nitric oxide and vascular reactivity in sepsis. Shock. 2008;30 Suppl 1:10–3.CrossRefPubMedGoogle Scholar
  15. 15.
    Capellini VK, Celotto AC, Baldo CF, Olivon VC, Viaro F, Rodrigues AJ, et al. Diabetes and vascular disease: basic concepts of nitric oxide physiology, endothelial dysfunction, oxidative stress and therapeutic possibilities. Curr Vasc Pharmacol. 2010;8(4):526–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Mehta S. The effects of nitric oxide in acute lung injury. Vascul Pharmacol. 2005;43(6):390–403.CrossRefPubMedGoogle Scholar
  17. 17.
    Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008;294(1):F1–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87(2):682–5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991;351(6329):714–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Li H, Poulos TL. Structure-function studies on nitric oxide synthases. J Inorg Biochem. 2005;99(1):293–305.CrossRefPubMedGoogle Scholar
  21. 21.
    Daff S. NO synthase: structures and mechanisms. Nitric Oxide. 2010;23(1):1–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459(6):807–16.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ozuyaman B, Grau M, Kelm M, Merx MW, Kleinbongard P. RBC NOS: regulatory mechanisms and therapeutic aspects. Trends Mol Med. 2008;14(7):314–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, et al. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood). 2009;234(9):1020–8.CrossRefGoogle Scholar
  25. 25.
    Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci (Landmark Ed). 2009;14:4436-43.Google Scholar
  26. 26.
    Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999;1411:273–89.CrossRefPubMedGoogle Scholar
  27. 27.
    Wennmalm A, Benthin G, Edlund A, Kieler-Jensen N, Lundin S, Petersson AS, et al. Nitric oxide synthesis and metabolism in man. Ann N Y Acad Sci. 1994;714:158–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14(7):552–60.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rhodes P, Leone AM, Francis PL, Struthers AD, Moncada S, Rhodes PM. The L-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun. 1995;209(2):590–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Aparicio PJ, Knaff DB, Malkin R. The role of an iron-sulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys. 1975;169(1):102–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Lancaster JR, Vega JM, Kamin H, Orme-Johnson NR, Orme-Johnson WH, Krueger RJ, et al. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem. 1979;254(4):1268–72.PubMedGoogle Scholar
  33. 33.
    Reddy D, Lancaster Jr JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science. 1983;221(4612):769–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Goretski J, Hollocher TC. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem. 1988;263(5):2316–23.PubMedGoogle Scholar
  35. 35.
    Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun. 2010;396(1):39–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35(11):1543–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, et al. Stomach NO synthesis. Nature. 1994;368(6471):502.CrossRefPubMedGoogle Scholar
  38. 38.
    Butler AR, Ridd JH. Formation of nitric oxide from nitrous acid in ischemic tissue and skin. Nitric Oxide. 2004;10(1):20–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Lancaster Jr JR. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide. 1997;1(1):18–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Thomas DD, Liu X, Kantrow SP, Lancaster JRJ. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A. 2001;98:355–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Hare JM. Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol. 2003;35(7):719–29.CrossRefPubMedGoogle Scholar
  42. 42.
    Tziomalos K, Hare JM. Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. Front Biosci (Landmark Ed). 2009;14:237-62.Google Scholar
  43. 43.
    Derbyshire ER, Marletta MA. Biochemistry of soluble guanylate cyclase. Handb Exp Pharmacol. 2009;191:17–31.CrossRefGoogle Scholar
  44. 44.
    Garthwaite J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem. 2010;334(1-2):221–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol. 1991;41(4):485–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380:221–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med. 2009;15(10):452–60.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stevens TH, Brudvig GW, Bocian DF, Chan SI. Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci U S A. 1979;76(7):3320–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brunori M, Giuffre A, Sarti P. Cytochrome c oxidase, ligands and electrons. J Inorg Biochem. 2005;99(1):324–36.CrossRefPubMedGoogle Scholar
  51. 51.
    Erusalimsky JD, Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol. 2007;27(12):2524–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Lancaster Jr JR, Hibbs Jr JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A. 1990;87(3):1223–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pellat C, Henry Y, Drapier JC. IFN-gamma-activated macrophages: detection by electron paramagnetic resonance of complexes between L-arginine-derived nitric oxide and non-heme iron proteins. Biochem Biophys Res Commun. 1990;166(1):119–25.CrossRefPubMedGoogle Scholar
  54. 54.
    Toledo Jr JC, Bosworth CA, Hennon SW, Mahtani HA, Bergonia HA, Lancaster Jr JR. Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes. J Biol Chem. 2008;283(43):28926–33.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004;101(12):4308–13.Google Scholar
  56. 56.
    McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.PubMedGoogle Scholar
  57. 57.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010;459(6):923–39.CrossRefPubMedGoogle Scholar
  60. 60.
    Lieberman EH, Gerhard MD, Uehata A, Selwyn AP, Ganz P, Yeung AC, et al. Flow-induced vasodilation of the human brachial artery is impaired in patients <40 years of age with coronary artery disease. Am J Cardiol. 1996;78(11):1210–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–51.CrossRefPubMedGoogle Scholar
  62. 62.
    Creager MA, Cooke JP, Mendelsohn ME, Gallagher SJ, Coleman SM, Loscalzo J, et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990;86(1):228–34.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993;88(5 Pt 1):2149–55.CrossRefPubMedGoogle Scholar
  64. 64.
    Esposito K, Nappo F, Giugliano F, Giugliano G, Marfella R, Giugliano D. Effect of dietary antioxidants on postprandial endothelial dysfunction induced by a high-fat meal in healthy subjects. Am J Clin Nutr. 2003;77(1):139–43.PubMedGoogle Scholar
  65. 65.
    Lamping K, Faraci F. Enhanced vasoconstrictor responses in eNOS deficient mice. Nitric Oxide. 2003;8(4):207–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep. 2003;5(6):473–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274(45):32512–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res. 2001;88(8):756–62.CrossRefPubMedGoogle Scholar
  69. 69.
    Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW, et al. Atherosclerotic vascular disease conference: Writing Group III: pathophysiology. Circulation. 2004;109(21):2617–25.CrossRefPubMedGoogle Scholar
  70. 70.
    Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, et al. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest. 2002;110(3):331–40.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990;87(13):5193–7.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci. 1995;57(22):2049–55.CrossRefPubMedGoogle Scholar
  73. 73.
    Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Freedman JE, Sauter R, Battinelli EM, Ault K, Knowles C, Huang PL, et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res. 1999;84(12):1416–21.CrossRefPubMedGoogle Scholar
  75. 75.
    Salvemini D, de Nucci G, Gryglewski RJ, Vane JR. Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci U S A. 1989;86(16):6328–32.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987;92(3):639–46.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bednar MM, Gross CE, Howard DB, Russell SR, Thomas GR. Nitric oxide reverses aspirin antagonism of t-PA thrombolysis in a rabbit model of thromboembolic stroke. Exp Neurol. 1997;146(2):513–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–81.CrossRefPubMedGoogle Scholar
  79. 79.
    Pearlstein DP, Ali MH, Mungai PT, Hynes KL, Gewertz BL, Schumacker PT. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol. 2002;22(4):566–73.CrossRefPubMedGoogle Scholar
  80. 80.
    Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.CrossRefPubMedGoogle Scholar
  81. 81.
    Vasquez-Vivar J, Kalyanaraman B, Martasek P. The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res. 2003;37(2):121–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Boger RH. L-Arginine therapy in cardiovascular pathologies: beneficial or dangerous? Curr Opin Clin Nutr Metab Care. 2008;11(1):55–61.CrossRefPubMedGoogle Scholar
  85. 85.
    Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, et al. L-arginine therapy in acute myocardial infarction: the vascular interaction with age in myocardial infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295(1):58–64.CrossRefPubMedGoogle Scholar
  86. 86.
    Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.CrossRefPubMedGoogle Scholar
  87. 87.
    Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, et al. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med. 2011;17(12):1619–26.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ellsworth ML. The red blood cell as an oxygen sensor: what is the evidence. Acta Physiol Scand. 2000;168:551–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A. 2000;97(21):11482–7.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Robinson JM, Lancaster Jr JR. Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide: mechanism(s) and physiologic versus pathophysiologic relevance. Am J Respir Cell Mol Biol. 2005;32(4):257–61.CrossRefPubMedGoogle Scholar
  91. 91.
    Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol. 2009;212(Pt 21):3387–93.CrossRefPubMedGoogle Scholar
  92. 92.
    Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, et al. Hemoglobin betaCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci U S A. 2015;112(20):6425–30.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res. 2015;35(8):643–54.CrossRefPubMedGoogle Scholar
  94. 94.
    Kleinbongard P, Dejam A, Lauer T, Jax T, Kerber S, Gharini P, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.CrossRefPubMedGoogle Scholar
  95. 95.
    Stuehr DJ, Marletta MA. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987;139(2):518–25.PubMedGoogle Scholar
  96. 96.
    Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141(7):2407–12.PubMedGoogle Scholar
  97. 97.
    Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992;256(5054):225–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Nathan CF, Hibbs Jr JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3(1):65–70.CrossRefPubMedGoogle Scholar
  99. 99.
    Cauwels A. Nitric oxide in shock. Kidney Int. 2007;72(5):557–65.CrossRefPubMedGoogle Scholar
  100. 100.
    Garthwaite G, Garthwaite J. Differential dependence on Ca2+ of N-methyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices. Neurosci Lett. 1989;97(3):316–22.CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang J, Snyder SH. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol. 1995;35:213–33.CrossRefPubMedGoogle Scholar
  102. 102.
    Whittle BJ, Boughton-Smith NK, Moncada S. Biosynthesis and role of the endothelium-derived vasodilator, nitric oxide, in the gastric mucosa. Ann N Y Acad Sci. 1992;664:126–39.CrossRefPubMedGoogle Scholar
  103. 103.
    Calatayud S, Barrachina D, Esplugues JV. Nitric oxide: relation to integrity, injury, and healing of the gastric mucosa. Microsc Res Tech. 2001;53(5):325–35.CrossRefPubMedGoogle Scholar
  104. 104.
    Munzel T, Sinning C, Post F, et al. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med. 2008;40(3):180–96.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Departments of Pharmacology & Chemical Biology, Medicine, and SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations