Advertisement

Nitrite and Nitrate in Human Breast Milk: Implications for Development

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Nitrite and nitrate from dietary sources offer a number of nutritional and health-promoting functions in adults and infants. The presence of relatively high concentrations of nitrite and nitrate in human breast milk provides additional support and evidence that these anions are necessary for growth and development as well as immunological support in the newborn infant. The emerging data suggest that differences in the nitrite and nitrate content of breast milk and formula milk may account for some of the health disparities of breastfed vs. formula-fed infants. This chapter presents the context for the essential role of nitrite and nitrate in the newborn infant.

Keywords

Nursing Infants Formula Health disparity Colostrum Neonate 

References

  1. 1.
    Heinig MJ. The American Academy of Pediatrics recommendations on breastfeeding and the use of human milk. J Hum Lact. 1998;14(1):2–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Gartner LM, Morton J, Lawrence RA, Naylor AJ, O’Hare D, Schanler RJ, et al. Breastfeeding and the use of human milk. Pediatrics. 2005;115(2):496–506.CrossRefPubMedGoogle Scholar
  3. 3.
    Hoddinott P, Tappin D, Wright C. Breast feeding. BMJ. 2008;336(7649):881–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    James DC, Lessen R. Position of the American Dietetic Association: promoting and supporting breastfeeding. J Am Diet Assoc. 2009;109(11):1926–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evidence Report/Technology Assessment. Rockville, MD: Tufts-New England Medical Center Evidence-Based Practice Center, under Contract No. 290-02-00222007 Contract No.: 07-E007.Google Scholar
  6. 6.
    Centers for Disease Control and Prevention (CDC). Breastfeeding trends and updated national health objectives for exclusive breastfeeding--United States, birth years 2000-2004. MMWR Morb Mortal Wkly Rep. 2007;56(30):760–3.Google Scholar
  7. 7.
    Greer FR, Shannon M. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics. 2005;116(3):784–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Johnson CJ, Kross BC. Continuing importance of nitrate contamination of groundwater and wells in rural areas. Am J Ind Med. 1990;18(4):449–56.CrossRefPubMedGoogle Scholar
  9. 9.
    McKnight GM, Duncan CW, Leifert C, Golden MH. Dietary nitrate in man: friend or foe? Br J Nutr. 1999;81(5):349–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Fan AM, Steinberg VE. Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharmacol. 1996;23(1 Pt 1):35–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Dusdieker LB, Getchell JP, Liarakos TM, Hausler WJ, Dungy CI. Nitrate in baby foods. Adding to the nitrate mosaic. Arch Pediatr Adolesc Med. 1994;148(5):490–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Kross BC, Ayebo AD, Fuortes LJ. Methemoglobinemia: nitrate toxicity in rural America. Am Fam Physician. 1992;46(1):183–8.PubMedGoogle Scholar
  13. 13.
    Cornblath MaH AF. Methhemoglobinaemia in young infants. J Pediatr. 1948;33:421–5.CrossRefGoogle Scholar
  14. 14.
    Kortboyer J, Olling, M, Zeilmaker, MJ The oral bioavailability of sodium nitrite investigated in healthy adult volunteers. Bilthoven: National Institute of Public Health and the Environment; 1997.Google Scholar
  15. 15.
    Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116(16):1821–31.CrossRefPubMedGoogle Scholar
  16. 16.
    L’Hirondel JL, Avery AA, Addiscott T. Dietary nitrate: where is the risk? Environ Health Perspect. 2006;114(8):A458–9; author reply A9-61.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Powlson DS, Addiscott TM, Benjamin N, Cassman KG, de Kok TM, van Grinsven H, et al. When does nitrate become a risk for humans? J Environ Qual. 2008;37(2):291–5.CrossRefPubMedGoogle Scholar
  18. 18.
    L’Hirondel JL. Nitrate and man: Toxic, Harmless or Beneficial? Wallingford, UK: CABI Publishing; 2001.CrossRefGoogle Scholar
  19. 19.
    Authority EFS. Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008;289:1–79.Google Scholar
  20. 20.
    World Health Organization. Recommendations; nitrate and nitrite. In: Guidelines for drinking water quality. 3rd edn. Geneva: WHO; 2004.Google Scholar
  21. 21.
    National Primary Drinking Water Regulations: Final Rule, 40., CFR parts 141–143 (1991).Google Scholar
  22. 22.
    Newton ER. Breastmilk: the gold standard. Clin Obstet Gynecol. 2004;47(3):632–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, et al. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst. 1996;88(21):1560–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Bartick M, Reinhold A. The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis. Pediatrics. 2010;125(5):e1048–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Hawkes JS, Neumann MA, Gibson RA. The effect of breast feeding on lymphocyte subpopulations in healthy term infants at 6 months of age. Pediatr Res. 1999;45(5 Pt 1):648–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Hawkes JS, Gibson RA. Lymphocyte subpopulations in breast-fed and formula-fed infants at six months of age. Adv Exp Med Biol. 2001;501:497–504.CrossRefPubMedGoogle Scholar
  27. 27.
    Fulhan J, Collier S, Duggan C. Update on pediatric nutrition: breastfeeding, infant nutrition, and growth. Curr Opin Pediatr. 2003;15(3):323–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Shu XO, Linet MS, Steinbuch M, Wen WQ, Buckley JD, Neglia JP, et al. Breast-feeding and risk of childhood acute leukemia. J Natl Cancer Inst. 1999;91(20):1765–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Singhal A. Early nutrition and long-term cardiovascular health. Nutr Rev. 2006;64(5 Pt 2):S44–9; discussion S72–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin RM, Gunnell D, Smith GD. Breastfeeding in infancy and blood pressure in later life: systematic review and meta-analysis. Am J Epidemiol. 2005;161(1):15–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hu FB, Michels KB, et al. Breastfeeding during infancy and the risk of cardiovascular disease in adulthood. Epidemiology. 2004;15(5):550–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Brook I, Barrett CT, Brinkman 3rd CR, Martin WJ, Finegold SM. Aerobic and anaerobic bacterial flora of the maternal cervix and newborn gastric fluid and conjunctiva: a prospective study. Pediatrics. 1979;63(3):451–5.PubMedGoogle Scholar
  33. 33.
    Morelli L. Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr. 2008;138(9):1791S–5.PubMedGoogle Scholar
  34. 34.
    Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002;68(1):219–26.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    West PA, Hewitt JH, Murphy OM. Influence of methods of collection and storage on the bacteriology of human milk. J Appl Bacteriol. 1979;46(2):269–77.CrossRefPubMedGoogle Scholar
  36. 36.
    Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143(6):754–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Neville MC. Physiology of lactation. Clin Perinatol. 1999;26(2):251–79. v.PubMedGoogle Scholar
  38. 38.
    Hamosh M. Bioactive factors in human milk. Pediatr Clin North Am. 2001;48(1):69–86.CrossRefPubMedGoogle Scholar
  39. 39.
    Garofalo R. Cytokines in human milk. J Pediatr. 2010;156(2 Suppl):S36–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Ohta N, Tsukahara H, Ohshima Y, Nishii M, Ogawa Y, Sekine K, et al. Nitric oxide metabolites and adrenomedullin in human breast milk. Early Hum Dev. 2004;78(1):61–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Hord NG, Ghannam JS, Garg HK, Berens PD, Bryan NS. Nitrate and nitrite content of human, formula, bovine, and soy milks: implications for dietary nitrite and nitrate recommendations. Breastfeed Med. 2011;6(6):393–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, Shinozaki M. Non-enzymatic nitric oxide generation in the stomachs of breastfed neonates. Acta Paediatr. 1999;88(10):1053–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Fujita K, Murono K. Nosocomial acquisition of Escherichia coli by infants delivered in hospitals. J Hosp Infect. 1996;32(4):277–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Mandar R, Mikelsaar M. Transmission of mother’s microflora to the newborn at birth. Biol Neonate. 1996;69(1):30–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Petersson J, Carlstrom M, Schreiber O, Phillipson M, Christoffersson G, Jagare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46(8):1068–75.CrossRefPubMedGoogle Scholar
  48. 48.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cekmen MB, Balat A, Balat O, Aksoy F, Yurekli M, Erbagci AB, et al. Decreased adrenomedullin and total nitrite levels in breast milk of preeclamptic women. Clin Biochem. 2004;37(2):146–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Dusdieker LB, Stumbo PJ, Kross BC, Dungy CI. Does increased nitrate ingestion elevate nitrate levels in human milk? Arch Pediatr Adolesc Med. 1996;150(3):311–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Jansson EA, Huang L, Malkey R, Govoni M, Nihlen C, Olsson A, et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol. 2008;4(7):411–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Dalsgaard T, Simonsen U, Fago A. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities. Am J Physiol Heart Circ Physiol. 2007;292(6):H3072–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem. 2008;283(26):17855–63.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, et al. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283(49):33927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1(8):804–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104(48):19144–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Abadeh S, Killacky J, Benboubetra M, Harrison R. Purification and partial characterization of xanthine oxidase from human milk. Biochim Biophys Acta. 1992;1117(1):25–32.CrossRefPubMedGoogle Scholar
  58. 58.
    Brown AM, Benboubetra M, Ellison M, Powell D, Reckless JD, Harrison R. Molecular activation-deactivation of xanthine oxidase in human milk. Biochim Biophys Acta. 1995;1245(2):248–54.CrossRefPubMedGoogle Scholar
  59. 59.
    Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, Blake DR. Antibacterial properties of xanthine oxidase in human milk. Lancet. 2000;356(9232):829–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Hancock JT, Salisbury V, Ovejero-Boglione MC, Cherry R, Hoare C, Eisenthal R, et al. Antimicrobial properties of milk: dependence on presence of xanthine oxidase and nitrite. Antimicrob Agents Chemother. 2002;46(10):3308–10.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, Minatogawa Y. Nitric oxide may trigger lactation in humans. J Pediatr. 1997;131(6):839–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M. The presence of nitric oxide synthase in the mammary glands of lactating rats. Pediatr Res. 1998;44(2):197–200.CrossRefPubMedGoogle Scholar
  63. 63.
    Lacasse P, Farr VC, Davis SR, Prosser CG. Local secretion of nitric oxide and the control of mammary blood flow. J Dairy Sci. 1996;79(8):1369–74.CrossRefPubMedGoogle Scholar
  64. 64.
    Authority EFS. Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008;689:1–79.Google Scholar
  65. 65.
    Lundberg JO, Feelisch M, Bjorne H, Jansson EA, Weitzberg E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide. 2006;15(4):359–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res. 2015;35(8):643–54.CrossRefPubMedGoogle Scholar
  68. 68.
    Havens JR, Strathdee SA, Fuller CM, Ikeda R, Friedman SR, Des Jarlais DC, et al. Correlates of attempted suicide among young injection drug users in a multi-site cohort. Drug Alcohol Depend. 2004;75(3):261–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Davis MK. Review of the evidence for an association between infant feeding and childhood cancer. Int J Cancer Suppl. 1998;11:29–33.CrossRefPubMedGoogle Scholar
  70. 70.
    Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dominguez KM, Moss RL. Necrotizing enterocolitis. Clin Perinatol. 2012;39(2):387–401.CrossRefPubMedGoogle Scholar
  72. 72.
    Gephart SM, McGrath JM, Effken JA, Halpern MD. Necrotizing enterocolitis risk: state of the science. Adv Neonatal Care. 2012;12(2):77–87; quiz 8–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A. 2013;110(23):9451–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology, and Reproductive SciencesMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations