Skip to main content

Asteroid Mining: Mineral Resources in Undifferentiated Bodies from the Chemical Composition of Carbonaceous Chondrites

  • Conference paper
  • First Online:
Assessment and Mitigation of Asteroid Impact Hazards

Abstract

Humanity has been mining Earth deposits for decades in order to extract tiny amounts of economically valuable metals and thereby, producing huge natural devastations of our planet. Recently, asteroids have grabbed our attention since they are fascinating objects carrying the hints of Solar System origin and, at the same time, containing large amounts of valuable resources including platinum group metals (Mining the sky: untold riches form the Asteroids, Comets, and Planets, Reading, 1996), iron, nickel, rare earth elements (REE), and water (Mining the sky: untold riches form the Asteroids, Comets, and Planets, Reading, 1996; The technical and economic feasibility of mining the Near Earth Asteroids. PHD thesis, 1997). At present, 14,036 near-Earth objects (NEOs) are known to travel around an orbit close to the Earth, from which 1684 are considered potentially hazardous asteroids (PHAs). In this scenario, may not be surprising that some private companies start considering asteroid mining. In the present study, we report the bulk rare-earth element (REEs, La-Lu) compositions of 38 carbonaceous chondrites as well as 2 R-chondrites, including 5 falls and 35 finds, by using inductively coupled plasma mass spectrometry (ICP-MS) technique. The CI-chondrite-normalized REE patterns show enormous Ce anomalies and large LREE enrichments never described before, attributed to the small sample size and terrestrial contamination. We have also found the characteristic Tm anomalies described by some authors (Acta 163:234–261, 2015; Geochim. Cosmochim. Acta 176:1–17, 2016) attributed to type II CAIs. We conclude that from the point of view of abundances, REEs are not worth mining yet for PGEs may be reasonable. In any case, the current inequality between supply and demand of rare earths is a real problem that will result in large price instabilities for many sectors of the economy, also having negative effects in new technologies and development. Consequently, we envision that space exploration will be a way to find the new resources required to sustain market economy over longer timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, F.C.: The birth environment of the solar system. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010)

    Article  ADS  Google Scholar 

  • Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A.: Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    Article  ADS  Google Scholar 

  • Barrat, J.A., Dauphas, N., Gillet, P., Bollinger, C., Etoubleau, J., Bischoff, A., Yamaguchi, A.: Evidence from Tm anomalies from non-CI refractory litophile element proportions in terrestrial planets and achondrites. Geochim. Cosmochim. Acta 176, 1–17 (2016)

    Article  ADS  Google Scholar 

  • Beitz et al. The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids. Astrophys. J. In press. (arXiv 1604.02340) (2016)

    Google Scholar 

  • Blair, B.R.: The role of Near-Earth Asteroids in long-term platinum supply. EB353 Metal Economics, Colorado School of Mines (2000)

    Google Scholar 

  • Blum, J., Wurm, G.: The growth mechanics of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008)

    Article  ADS  Google Scholar 

  • Bouvier, A., Wadhwa, M.: The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010)

    Article  ADS  Google Scholar 

  • Boynton, W.V.: Fractionation in the solar nebula: condensation of yttrium and the rare earth elements. Geochim. Cosmochim. Acta 39, 569–584 (1975)

    Article  ADS  Google Scholar 

  • Brearley, A.J., Jones, R.H.: Chondritic meteorites. In: Papike, J.J. (ed.) Reviews in Mineralogy. Planetary materials, vol. 36, pp. 3.1–3.398. Mineralogical Society of America, Washington (1998)

    Google Scholar 

  • British Geological Survey, Natural Environment Research Council: Rare Earth Elements. Compiled by Walters, A., Lusty, P. In: Minerals UK (www.MineralsUK.com) (2011)

  • Brownlee, D., Tsou, P., et al.: Comet Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., Fegley, M.B.: Nucleation and condensation in the primitive solar nebula. Icarus 52, 1–13 (1982)

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., Truran, J.W.: The supernova trigger for formation of the solar system. Icarus 30, 447–461 (1977)

    Article  ADS  Google Scholar 

  • Choe, W.H., Huber, H., Rubin, A.E., Kallemeyn, G.W., Wasson, J.T.: Composition and taxonomy of 15 unusual carbonaceous chondrites. Meteorit. Planet. Sci. 45, 531–554 (2010)

    Article  ADS  Google Scholar 

  • Cuzzi, J.N., Hogan, R.C., Shariff, K.: Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008)

    Article  ADS  Google Scholar 

  • Dauphas, N., Pourmand, A.: Thulium anomalies and rare earth element patterns in meteorites and Earth: nebular fractionation and the nugget effect. Geochim. Cosmochim. Acta 163, 234–261 (2015)

    Article  ADS  Google Scholar 

  • Davis, A.M., Grossman, L.: Condensation and fractionation of rare earths in the solar nebula. Geochim. Cosmochim. Acta 43, 1611–1632 (1979)

    Article  ADS  Google Scholar 

  • Davis, A.M., Tanaka, T., Grossman, L., Lee, T., Wasserburg, G.J.: Chemical composition of HAL, an isotopically unusual Allende inclusion. Geochim. Cosmochim. Acta 46, 1627–1651 (1982)

    Article  ADS  Google Scholar 

  • Dominik, C.P., Blum, J., Cuzzi, J.N., Wurm, G.: Growth of dust as the initial step toward planet formation. See Reipurth et al., pp. 783–800 (2007)

    Google Scholar 

  • Ebihara M., Shinonaga T., Nakahara H., Kondoh A., Miyamoto M., Kojima H.: Depth-profiles of halogen abundance and integrated intensity of hydration band near 3 lm in ALH 77231, Antarctic L6 chondrite. In: Koeberl, C., Cassidy W.A. (eds.) Differences between Antarctic and non-Antarctic meteorites, LPI Technical Report 90-01, pp. 32–37. Lunar and Planetary Institute, Houston (1989)

    Google Scholar 

  • Elvis, M.: How many ore-bearing asteroids? Planet. Space Sci. 91, 20–26 (2014)

    Article  ADS  Google Scholar 

  • Evensen, N.M., Hamilton, P.J., O’Nions, R.K.: Rare-Earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42, 1199–1212 (1978)

    Article  ADS  Google Scholar 

  • Farquhar, R.W., et al.: NEAR mission overview and trajectory dessign. J. Astronaut. Sci. 43, 353–372 (1999)

    Google Scholar 

  • Fegley, B., Ireland, T.R.: Chemistry of the rare earth elements in the solar nebula. Eur. J. Solid State Inorg. Chem. 28, 335–346 (1991)

    Google Scholar 

  • Froeschlé, C., Greenberg, R.: Mean motion resonances. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 827–844. University of Arizona Press, Tucson (1989)

    Google Scholar 

  • Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ikeda, H., Kominato, T., Miyamoto, H., Nakamura, A.M., Nakamura, R., Sasaki, S., Uesugi, K.: The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006)

    Article  ADS  Google Scholar 

  • Goldreich, P., Ward, W.R.: The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973)

    Article  ADS  Google Scholar 

  • Grossman, L.: Refractory trace elements in Ca-Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 37, 1119–1140 (1973)

    Article  ADS  Google Scholar 

  • Harben, P.W.: Industrial minerals handybook, 4th ed. Rare earth minerals and compounds (2002)

    Google Scholar 

  • Hartmann, W.K., Neukum, G.: Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–193 (2001)

    Article  ADS  Google Scholar 

  • Hirota, Y., Tamaki, M., Nakamura, N.: Rare earth element abundances in the CK chondrites including the Kobe meteorite. Geochem. J. 36, 309–322 (2002)

    Article  Google Scholar 

  • Huber, H., Rubin, A.E., Kallemeyn, G.W., Wasson, J.T.: Siderophile-element anomalies in CK carbonaceous chondrites: Implications for parent-body aqueous alteration and terrestrial weathering of sulfides. Geochim. Cosmochim. Acta 70, 4019–4037 (2006)

    Article  ADS  Google Scholar 

  • Iluka Mineral Sands Mining. www.iluka.com (2010)

  • Inoue, M., Kimura, M., Nakamura, N.: REE abundances in the matrix of Allende (CV) chondrite: Implications for matrix origin. Meteorit. Planet. Sci. 39, 599–608 (2004)

    Article  ADS  Google Scholar 

  • Ishiguro, M., Kuroda, D., Hasegawa, S., Kim, M.J., Choi, Y.J., Moskivitz, N., Abe, S., Pan, K.S., Takahashi, J., Takagi, Y., Arai, A., et al.: Optical Properties of (162173) 1999 JU3: In preparation for the JAXA Hayabusa 2 sample return mission. Astrophys. J. 792, 74–83 (2014)

    Article  ADS  Google Scholar 

  • Kallemeyn, G.W., Wasson, J.T.: The composition classification of chondrites. Part I: the carbonaceous chondrite groups. Geochim. Cosmochim. Acta 45, 1217–1230 (1981)

    Article  ADS  Google Scholar 

  • Kallemeyn, G.W., Rubin, A.E., Wasson, J.T.: The composition classification of chondrites. Part V: the Karoonda (CK) group of carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 881–892 (1991)

    Article  ADS  Google Scholar 

  • Kallemeyn, G.W., Rubin, A.E., Wasson, J.T.: The composition classification of chondrites. Part VI: the CR carbonaceous chondrite group. Geochim. Cosmochim. Acta 58, 2873–2888 (1994)

    Article  ADS  Google Scholar 

  • Kallemeyn, G.W., Rubin, A.E., Wasson, J.T.: The composition classification of chondrites. Part VII: the R chondrite group. Geochim. Cosmochim. Acta 60, 2243–2256 (1996)

    Article  ADS  Google Scholar 

  • Kornacki, A.S., Fegley Jr., B.: The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions: implications for chemical and physical processes in the solar nebula. Earth Planet. Sci. Lett. 79, 217–234 (1986)

    Article  ADS  Google Scholar 

  • Lada, C.J., Lada, E.A.: Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)

    Article  ADS  Google Scholar 

  • Lauretta, D.S., Bartels, A.E., Barucci, M.A., Bierhaus, E.B., Binzel, R.P., Bottke, W.F., Campins, H., Chesley, S.R., Clark, B.C., Clark, B.E., Cloutis, E.A., Connolly, H.C., Crombie, M.K., Delbó, M., Dworkin, J.P., Emery, J.P., Glavin, D.P., Hamilton, V.E., Hergenrother, C.W., Johnson, C.L., Keller, L.P., Michel, P., Nolan, M.C., Sandford, S.A., Scheeres, D.J., Simon, A.A., Sutter, B.M., Vokrouhlický, D., Walsh, K.J.: The Osiris-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteor. Planet. Sci. 50, 834–849 (2015)

    Article  ADS  Google Scholar 

  • Lewis, J.S.: The temperature gradient in the solar nebula. Science 186, 440–443 (1974)

    Article  ADS  Google Scholar 

  • Lodders, K.: Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  Google Scholar 

  • Lodders, K., Amari, S.: Presolar grains from meteorites: remnants from the early times of the solar system. Chemie der Erde 65, 93–166 (2005)

    Article  ADS  Google Scholar 

  • Long, K.R., Van Gosen, B.S., Foley, N.K., Cordier, D.: The principal rare Earth elements deposits of the United States—a summary of domestic deposits and a global perspective. Scientific Investigations Report 5220, U.S. Department of the Interior, U.S. Geological Survey (2010)

    Google Scholar 

  • Macke, R.J., Consolmagno, G.J., Britt, D.T.: Density, porosity and magnetic susceptibility of carbonaceous chondrites. Meteor. Planet. Sci. 46, 1842–1862 (2011)

    Article  ADS  Google Scholar 

  • Martin, P.M., Mason, B.: Major and trace elements in the Allende meteorite. Nature 249, 333–334 (1974)

    Article  ADS  Google Scholar 

  • Masson, B., Martin, P.M.: Geochemical differences among components of the Allende meteorite Smithson. Contrib. Earth. Sci. 19, 84–95 (1977)

    Google Scholar 

  • Masson, B., Taylor, S.R.: Inclusions in the Allende meteorite. Smithson. Contrib. Earth. Sci. 25, 1–30 (1982)

    Article  Google Scholar 

  • McDonough, W.F., Sun, S.-s.: The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  Google Scholar 

  • McKeegan, K.D., Aleon, J., Bradley, J., Brownlee, D., Busemann, H., et al.: Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006)

    Article  ADS  Google Scholar 

  • Meyer, B.S., Clayton, D.D.: Short-lived radioactivities and the birth of the Sun. Space Sci. Rev. 92, 133–152 (2000)

    Article  ADS  Google Scholar 

  • Michard, A.: Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53, 745–750 (1989)

    Article  ADS  Google Scholar 

  • Michel, P., Richardson, D.C., Durda, D.D., Jutzi, M., Asphaug, E.: Collisional formation and modeling of asteroid families. In: Michel, P., et al. (eds.) Asteroids IV, pp. 341–354. University of Arizona, Tucson (2015)

    Chapter  Google Scholar 

  • Nakamura, N.: Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38, 757–775 (1974)

    Article  ADS  Google Scholar 

  • Nakamura, E., et al.: Itokawa dust particles. A direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011)

    Google Scholar 

  • Nakamura, N., Masuda, A.: Chondrites with peculiar rare-earth patterns. Earth Planet. Sci. Lett. 19, 429–437 (1973)

    Article  ADS  Google Scholar 

  • Nakamura, E., Makishima, A., Moriguti, T., Kobayashi, K., Tanaka, R., Kunihiro, T., Tsujimori, T., Sakaguchi, C., Kitagawa, H., Ota, T., Yachi, Y., Yada, T., Abe, M., Fujimura, A., Ueno, M., Mukai, T., Yoshikawa, M., Kawaguchi, J.: Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft. Proc. Natl. Acad. Sci. 109, E624–E629 (2012)

    Article  ADS  Google Scholar 

  • Nittler, L.R., Dauphas, N.: Meteorites and the chemical evolution of the Milky Way. See Lauretta and McSween, 2006, pp. 147–167 (2006)

    Google Scholar 

  • O’Neill, G.K. et al.: Space Resources and Space Settlements. Specifically, Gaffey, M.J., Helin, E.F., O’Leary, B.: An assessment of Near-Earth Asteroid resources, pp. 191–204. J. Billingham, W. Gilbreath, B. O’Leary (eds.), NASA SP-428 (1979)

    Google Scholar 

  • Palme, H.: Chemical and isotopic heterogeneity in protosolar matter. Philos. Trans. R. Soc. Lond. A 359, 2061–2075 (2001)

    Article  ADS  Google Scholar 

  • Palme, H., Jones, A.: Solar system abundances of the elements. In: Davis, A.M. (ed.) Meteorites, Comets, and Planets. Treatise on Geochemistry, vol. 1, pp. 41–61. Elsevier-Pergamon, Oxford (2003). eds. H.D. Holland and K.K. Turekian

    Google Scholar 

  • Rudnick, R.L., Gao, S.: Composition of the continental crust. In: TOG, 3.01 (2005)

    Google Scholar 

  • Schmitz, B.: Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde 73, 117–145 (2013)

    Article  ADS  Google Scholar 

  • Schmitz, B., Häggström, T., Tassinari, M.: Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science 300, 961–964 (2003)

    Article  ADS  Google Scholar 

  • Shu, F.H., Shang, H., Lee, T.: Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996)

    Article  ADS  Google Scholar 

  • Shu, F.H., Shang, H., Glassgold, A.E., Lee, T.: X-rays and fluctuating X-winds from protostars. Science 277, 1475–1479 (1997)

    Article  ADS  Google Scholar 

  • Shu, F.H., Shang, H., Gounelle, M., Glassgold, A.E., Lee, T.: The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001)

    Article  ADS  Google Scholar 

  • Sonter, M.J.: The technical and economic feasibility of mining the Near Earth Asteroids. PHD thesis, University of Wollongong (1997)

    Google Scholar 

  • Stracke, A., Palme, H., Gellissen, M., Münker, C., Kleine, T., Birbaum, K., Günther, D., Bourdon, B., Zipfel, J.: Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta 85, 114–141 (2012)

    Article  ADS  Google Scholar 

  • Takigawa, A., Miki, J., Tachibana, S., Huss, G.R., Tominaga, N., et al.: Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. Astrophys. J. 688, 1382–1387 (2008)

    Article  ADS  Google Scholar 

  • Tanaka, T., Masuda, A.: Rare-earth elements in matrix, inclusions, and chondrules of the Allende meteorite. Icarus 19, 523–530 (1973)

    Article  ADS  Google Scholar 

  • Taylor, S.R.: Composition and chemical evolution of the solar nebula. In: Taylor, S.R. (ed.) Solar System Evolution. A New Perspective, 2nd edn, pp. 73–104. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  • Trigo-Rodríguez, J.M.: Aqueous alteration in chondritic asteroids and comets from the study of carbonaceous chondrites. In: Lee, M.R., Leroux, H. (eds.) Planetary Mineralogy. EMU notes in mineralogy, vol. 15, pp. 67–87. European Mineralogical Union and the Mineralogical Society, London (2015)

    Google Scholar 

  • Trigo-Rodríguez, J.M., García-Hernández, D.A., Lugaro, M., Karakas, A.I., van Raai, M., García Lario, P., Manchado, A.: The role of massive AGB stars in the early Solar System composition. Meteor. Planet. Sci. 44, 627–641 (2009)

    Article  ADS  Google Scholar 

  • Veverka, J., et al.: NEAR at EROS: imaging and spectral results. Science 289, 2088–2097 (2000)

    Article  ADS  Google Scholar 

  • Wai, C.M., Wasson, J.T.: Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36, 1–13 (1977)

    Article  ADS  Google Scholar 

  • Wasserburg, G.J., Busso, M., Gallino, R., Nollett, K.M.: Short-lived nuclei in the early solar system: possible AGB sources. Nucl. Phys. A. 777, 5–69 (2006)

    Article  ADS  Google Scholar 

  • Wasson, J.T.: Meteorites. Their record of early Solar System history. Freeman, New York (1985). Chapter IV

    Google Scholar 

  • Wasson, J.T., Kallemeyn, G.W.: Composition of chondrites. Philos. Trans. R. Soc. Lond. A325, 353–544 (1988)

    Google Scholar 

  • Wasson, J.T., Isa, J., Rubin, A.E.: Compositional and petrographic similarities of CV and CK chondrites: a single group with variations in textures and volatile concentrations attributable to impact heating, crushing and oxidation. Geochim. Cosmochim. Acta 108, 45–62 (2013)

    Article  ADS  Google Scholar 

  • Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp.19–52. The University of Arizona Press, Tucson (2006)

    Google Scholar 

  • Wetherill, G.W.: Origin of the asteroid belt. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 661–680. University of Arizona Press, Tucson (1989)

    Google Scholar 

  • Willacy, K., Alexander, C., Ali-Dib, M., Ceccarelli, C., Charnley, S.B., Doronin, M., Ellinger, Y., Gast, P., Gibb, E., Milam, S.N., Mousis, O., Pauzat, F., Tornow, C., Wirström, E.S., Zicler, E.: The Composition of the protosolar disk and the formation conditions for comets. Space Sci. Rev. 197, 151–190 (2015)

    Article  ADS  Google Scholar 

  • Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Asntrphys. 49, 65 (2011)

    ADS  Google Scholar 

  • Xiao, Z., Strom, R.G., Chapman, C.R., Head, J.W., Klimczak, C., Ostrach, L.R., Helbert, J., D’Incecco, P.: Comparisons of fresh complex impact craters on Mercury and the Moon. Implications for controlling factors in impact excavation processes. Icarus 228, 260–275 (2014)

    Article  ADS  Google Scholar 

  • Zinner, E.: Presolar grains. In: Davis, A. (ed.) Meteorites, Comets and Planets. Treatise on geochemistry, vol. 1, pp. 17–39. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Zolensky, M.E., McSween, H.Y.: Aqueous alteration. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp. 114–143. The University of Arizona Press, Tucson (1988)

    Google Scholar 

  • Zolensky, M.E., Mittlefehldt, D.W., Lipschutz, M.E., Wang, M.-S., Clayton, R.N., Mayeda, T.K., Grady, M.M., Pillinger, C.T., Barber, D.: CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochim. Cosmochim. Acta 61, 5099–5115 (1997)

    Article  ADS  Google Scholar 

  • Zuber, M.T., Smith, D.E., Cheng, A.F., Garvin, J.B., et al.: The shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder. Science 289, 2097–2101 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Spanish Ministry of Science and Innovation projects AYA2011-26522, and AYA2015-67175-P, to which M. Martínez-Jiménez, J.M. Trigo-Rodríguez and C. E. Moyano-Cambero acknowledge financial support. We also thank the NASA Meteorite Working Group, and the Johnson Space Center for the samples provided. This study was done in the frame of a PhD. on Physics at the Autonomous University of Barcelona (UAB) funded as a FPI in AYA2011-26522 (P.I. J.M. Trigo-Rodríguez).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Martínez-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Martínez-Jiménez, M., Moyano-Cambero, C.E., Trigo-Rodríguez, J.M., Alonso-Azcárate, J., Llorca, J. (2017). Asteroid Mining: Mineral Resources in Undifferentiated Bodies from the Chemical Composition of Carbonaceous Chondrites. In: Trigo-Rodríguez, J., Gritsevich, M., Palme, H. (eds) Assessment and Mitigation of Asteroid Impact Hazards. Astrophysics and Space Science Proceedings, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-46179-3_5

Download citation

Publish with us

Policies and ethics