Advertisement

Chelyabinsk Meteorite as a Proxy for Studying the Properties of Potentially Hazardous Asteroids and Impact Deflection Strategies

  • Carles E. Moyano-Cambero
  • Josep M. Trigo-Rodríguez
  • Eva Pellicer
  • Marina Martínez-Jiménez
  • Jordi Llorca
  • Narcís Metres
  • Jordi Sort
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 46)

Abstract

Most asteroids of the near-Earth population have experienced significant collisional processing since they formed, being disrupted and excavated and consequently producing smaller bodies that are delivered from the Main asteroid Belt to the near-Earth asteroid region, thanks to planetary resonances and non-gravitational forces. By studying meteorites arrived to Earth we can obtain clues on this processing through the study of shock metamorphism and brecciation of their rock constituents, among other features. The massive Chelyabinsk meteorite fall produced about one metric ton of meteorites that can be analyzed to decipher the physical processes affecting the surface of this Potentially Hazardous Asteroid. Here we describe physical properties of Chelyabinsk samples, and how impact processing has affected asteroid albedos, a first step in order to relate this data with the reflectance properties of near-Earth asteroids population. This information will be of major interest for future asteroid deflecting missions.

Keywords

Ordinary Chondrite Main Asteroid Belt Shock Metamorphism Chelyabinsk Meteorite Shock Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Ministerio de Educación y Ciencia (MEC) is acknowledged for providing AYA2011-26522 and 2015-67175-P grants (P.I. J.M.T-R.). J.L. is Serra Húnter Fellow and is grateful to ICREA Academia program. We thank Prof. Addolf Bischoff (Münster) for providing Chalyabinsk sections, and Marcos Rosado (ICN2, Barcelona) is acknowledged for analytical and technical assistance. This research utilizes spectra acquired by several authors with the NASA RELAB facility at Brown University that were compared with the obtained by our group under project AYA 2011-26522. N. Mestres/ICMAB, acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Program for Centers of Excellence in R&D (SEV—2015-0496). This study was done in the frame of a Ph.D. on Physics at the Autonomous University of Barcelona (UAB).

References

  1. Anton, R.J., Subhash, G.: Dynamic Vickers indentation of brittle materials. Wear 239, 27–35 (2000)CrossRefGoogle Scholar
  2. Avril, C., Malavergne, V., Caracas, R., Zanda, B., Reynard, B., Charon, E., Bobocioiu, E., Brunet, F., Borensztajn, S., Pont, S., Tarrida, M., Guyot, F.: Raman spectroscopic properties and Raman identification of CaS-MgS-MnS-FeS-Cr2FeS4 sulfides in meteorites and reduced sulfur-rich systems. Meteorit. Planet. Sci. 48, 1415–1426 (2013)ADSCrossRefGoogle Scholar
  3. Benz, W., Jutzi, M.: Collision and impact simulations including porosity. Proc. Int. Astron. Union 2, 223 (2006)CrossRefGoogle Scholar
  4. Binns, R.A., Davis, R.J., Reed, S.J.B.: Ringwoodite, natural (Mg, Fe)2SiO4 spinel in the Tenham meteorite. Nature 221, 943–944 (1969)ADSCrossRefGoogle Scholar
  5. Binzel, R.P., Lupishko, D.F., Martino, M.D., Whiteley, R.J., Hahn, G.J.: Physical properties of near-earth objects. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 255–271. University of Arizona Press, Tucson (2002)Google Scholar
  6. Binzel, R.P., Morbidelli, A., Merouane, S., DeMeo, F.E., Birlan, M., Vernazza, P., Thomas, C.A., Rivkin, A.S., Bus, S.J., Tokunaga, A.T.: Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463, 331–334 (2010)ADSCrossRefGoogle Scholar
  7. Binzel, R.P., Thomas, C.A., DeMeo, F.E., Tokunaga, A.T., Rivkin, A.S., Bus, S.J.: Lunar and planetary science XXXVII. In: 37th Lunar and Planetary Science Conference. Abstract 1491 (2006)Google Scholar
  8. Bischoff, A.: Discovery of purple-blue ringwoodite within shock veins of an LL6 ordinary chondrite from Northwest Africa. In: 33rd Lunar and Planetary Science Conference. Abstract 1264 (2002)Google Scholar
  9. Bischoff, A., Dyl, K.A., Horstmann, M., Ziegler, K., Wimmer, K., Young, E.D.: Reclassification of Villalbeto de la Peña-Occurrence of a winonaite-related fragment in a hydrothermally metamorphosed polymict L-chondritic breccia. Meteorit. Planet. Sci. 48, 628–640 (2013a)ADSCrossRefGoogle Scholar
  10. Bischoff, A., Horstmann, M., Pack, A., Laubenstein, M., Haberer, S.: Asteroid 2008 TC3-Almahata Sitta: a spectacular breccia containing many different ureilitic and chondritic lithologies. Meteorit. Planet. Sci. 45, 1638–1656 (2010)ADSCrossRefGoogle Scholar
  11. Bischoff, A., Horstmann, M., Vollmer, C., Heitmann, U., Decker, S.: Chelyabinsk—not only another ordinary LL5 chondrite, but a spectacular chondrite breccia. Meteorit. Planet. Sci. 48, A61 (2013b)CrossRefGoogle Scholar
  12. Bischoff, A., Palme, H., Schultz, L., Weber, D., Weber, H.W., Spettel, B.: Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: similarities with ALH85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta 57, 2631–2648 (1993)ADSCrossRefGoogle Scholar
  13. Bischoff, A., Rubin, A.E., Keil, K., Stöffler, D.: Lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting. Earth Planet. Sci. Lett. 66, 1–10 (1983)ADSCrossRefGoogle Scholar
  14. Bischoff, A., Scott, E.R.D., Metzler, K., Goodrich, C.A.: Nature and origins of meteoritic breccias. In: Lauretta, D.S., McSween, H.Y.J. (eds.) Meteorites and the Early Solar System II, pp. 679–712. University of Arizona Press, Tucson (2006)Google Scholar
  15. Bischoff, A., Stöffler, D.: Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur. J. Mineral. 4, 707–755 (1992)CrossRefGoogle Scholar
  16. Bland, P.A., Artemieva, N.A.: Efficient disruption of small asteroids by Earth’s atmosphere. Nature 424, 288–291 (2003)ADSCrossRefGoogle Scholar
  17. Borovička, J., Spurný, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., Shrbený, L.: The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503, 235–237 (2013)ADSGoogle Scholar
  18. Bottke Jr., W.F., Broz, M., O’Brien, D.P., Campo Bagatín, A., Morbidelli, A., Marchi, S.: The collisional evolution of the main asteroid belt. In: Michel, P., DeMeo, F.E., Bottke Jr., W.F. (eds.) Asteroids IV, pp. 701–724. University of Arizona Press, Tucson (2015)Google Scholar
  19. Britt, D., Yeomans, D., Housen, K., Consolmagno, G.: Asteroid density, porosity, and structure. In: Bottke, W.F. (ed.) Asteroids III, pp. 485–500. University of Arizona Press, Tucson (2002)Google Scholar
  20. Britt, D.T., Abreu, N., Asphaug, E.I., Campins, H., Gertsch, L., Sercel, J., Zacny, K.: Boulder Physical Properties. Asteroid Redirect Mission (ARM): Final Report Draft for Public Comment, 35–43 (2015)Google Scholar
  21. Britt, D.T., Pieters, C.M.: Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279–285 (1991)ADSCrossRefGoogle Scholar
  22. Britt, D.T., Pieters, C.M.: Darkening in black and gas-rich ordinary chondrites: The spectral effects of opaque morphology and distribution. Geochim. Cosmochim. Acta 58, 3905–3919 (1994)ADSCrossRefGoogle Scholar
  23. Brown, P.G., Assink, J.D., Astiz, L., Blaauw, R., Boslough, M.B., Borovička, J., Brachet, N., Brown, D., Campbell-Brown, M., Ceranna, L., Cooke, W., de Groot-Hedlin, C., Drob, D.P., Edwards, W., Evers, L.G., Garces, M., Gill, J., Hedlin, M., Kingery, A., Laske, G., Le Pichon, A., Mialle, P., Moser, D.E., Saffer, A., Silber, E., Smets, P., Spalding, R.E., Spurný, P., Tagliaferri, E., Uren, D., Weryk, R.J., Whitaker, R., Krzeminski, Z.: A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013)ADSGoogle Scholar
  24. Brownlee, D.E.: The origin and properties of dust impacting the earth. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds.) Accretion of Extraterrestrial Matter Throughout Earth’s History, pp. 1–12. Springer US, New York (2001)CrossRefGoogle Scholar
  25. Bruck Syal, M., Owen, J.M., Miller, P.M.: Deflection by kinetic impact: sensitivity to asteroid properties. Icarus 269, 50–61 (2016)ADSCrossRefGoogle Scholar
  26. Burbine, T.H.: Asteroids: their composition and impact threat. Vestn. Ces. Geol. Ust. 77, 243–252 (2002)Google Scholar
  27. Burbine, T.H., Mccoy, T.J., Nittler, L.R., Benedix, G.K., Cloutis, E.A., Dickinson, T.L.: Spectra of extremely reduced assemblages: implications for mercury. Meteorit. Planet. Sci. 37, 1233–1244 (2002)ADSCrossRefGoogle Scholar
  28. Bus, S.J., Binzel, R.P.: Phase II of the small main-belt asteroid spectroscopic survey a feature-based taxonomy. Icarus 158, 146–177 (2002)ADSCrossRefGoogle Scholar
  29. Chapman, C.R., Morrison, D.: Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367, 33–40 (1994)ADSCrossRefGoogle Scholar
  30. Chen, M., Xie, X.: Raman spectra of orthopyroxene in two natural shocked H chondrites. Meteoritics 27, 209 (1992)ADSGoogle Scholar
  31. Consolmagno, G.J., Britt, D.T., Macke, R.J.: The significance of meteorite density and porosity. Chem. Erde-Geochem. 68, 1–29 (2008)ADSCrossRefGoogle Scholar
  32. DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J.: An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009)ADSCrossRefGoogle Scholar
  33. Dmitriev, V., Lupovka, V., Gritsevich, M.: Orbit determination based on meteor observations using numerical integration of equations of motion. Planet. Space Sci. 117, 223–235 (2015)ADSCrossRefGoogle Scholar
  34. Dunn, T.L., Burbine, T.H., Bottke, W.F., Clark, J.P.: Mineralogies and source regions of near Earth asteroids. In: Lunar and Planetary Science Conference 1997 (2013)Google Scholar
  35. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)CrossRefGoogle Scholar
  36. Gaffey, M.J.: Spectral reflectance characteristics of the meteorite classes. J. Geophys. Res. 81, 905–920 (1976)ADSCrossRefGoogle Scholar
  37. Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A.: Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993)ADSCrossRefGoogle Scholar
  38. Galimov, E.M.: Chelyabinsk meteorite—an LL5 chondrite. Sol. Syst. Res. 47, 255–259 (2013)ADSCrossRefGoogle Scholar
  39. Galimov, E.M., Kolotov, V.P., Nazarov, M.A., Kostitsyn, Y.A., Kubrakova, I.V., Kononkova, N.N., Roshchina, I.A., Alexeev, V.A., Kashkarov, L.L., Badyukov, D.D., Sevast’yanov, V.S.: Analytical results for the material of the Chelyabinsk meteorite. Geochem. Int. 51, 522–539 (2013)CrossRefGoogle Scholar
  40. Goodrich, C., Bischoff, A., O’Brien, D.P.: Asteroid 2008 TC3 and the fall of Almahata sitta, a unique meteorite breccia. Elements 10, 31–37 (2014)CrossRefGoogle Scholar
  41. Grier, J.A., Kring, D.A., Swindle, T.D., Rivkin, A.S., Cohen, B.A., Britt, D.T.: Analyses of the chondritic meteorite Orvinio (H6): insight into the origins and evolution of shocked H chondrite material. Meteorit. Planet. Sci. 39, 1475–1493 (2004)ADSCrossRefGoogle Scholar
  42. Hoerth, T., Schäfer, F.K., Hupfer, J., Millon, O., Wickert, M.: Momentum transfer in hypervelocity impact experiments on rock targets. Procedia Eng. 103, 197–204 (2015)CrossRefGoogle Scholar
  43. Holsapple, K.A., Housen, K.R.: Momentum transfer in asteroid impacts. I. Theory and scaling. Icarus 221, 875–887 (2012)ADSCrossRefGoogle Scholar
  44. Horstmann, M., Bischoff, A.: The Almahata Sitta polymict breccia and the late accretion of asteroid 2008 TC3. Chem. Erde-Geochem. 74, 149–183 (2014)ADSCrossRefGoogle Scholar
  45. Keil, K., Bell, J.F., Britt, D.T.: Reflection spectra of shocked ordinary chondrites and their relationship to asteroids. Icarus 98, 43–53 (1992)ADSCrossRefGoogle Scholar
  46. Kieffer, S.W.: From regolith to rock by shock. Moon 13, 301–320 (1975)ADSCrossRefGoogle Scholar
  47. Kocherov, A.V., Korochantsev, A.V., Lorenz, C.A., Ivanova, M.A., Grokhovsky, V.I.: Recovery, laboratory preparation and current state of the main mass of the Chelyabinsk meteorite. In: 45th Lunar and Planetary Science Conference. Abstract 2227 (2014)Google Scholar
  48. Kohout, T., Gritsevich, M., Grokhovsky, V.I., Yakovlev, G.A., Haloda, J., Halodova, P., Michallik, R.M., Penttilä, A., Muinonen, K.: Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite—insight into shock-induced changes in asteroid regoliths. Icarus 228, 78–85 (2014)ADSCrossRefGoogle Scholar
  49. Lafuente, B., Downs, R.T., Yang, H., Stone, N.: The power of databases: the RRUFF project. In: Armbuster, T., Danisi, R.M. (eds.) Highlights in Mineralogical Crystallography, pp. 1–30. De Gruyter, Berlin (2015)CrossRefGoogle Scholar
  50. Llorca, J., Trigo-Rodríguez, J.M.: Raman spectroscopy of merrilite in Villalbeto de la Peña L6 ordinary chondrite. In: 37th Lunar and Planetary Science Conference. Abstract 1055 (2004)Google Scholar
  51. Macke, R.J., Consolmagno, G.J., Britt, D.T.: Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 46, 1842–1862 (2011)ADSCrossRefGoogle Scholar
  52. Metzler, K., Bischoff, A., Greenwood, R.C., Palme, H., Gellissen, M., Hopp, J., Franchi, I.A., Trieloff, M.: The L3-6 chondritic regolith breccia Northwest Africa (NWA) 869: (I) Petrology, chemistry, oxygen isotopes, and Ar-Ar age determinations. Meteorit. Planet. Sci. 46, 652–680 (2011)ADSCrossRefGoogle Scholar
  53. Michel, P., Benz, W., Tanga, P., Richardson, D.C.: Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294(5547), 1696–1700 (2001)ADSCrossRefGoogle Scholar
  54. Michel, P., Cheng, A., Küppers, M., Pravec, P., Blum, J., Delbo, M., Green, S.F., Rosenblatt, P., Tsiganis, K., Vincent, J.-B., Biele, J., Ciarletti, V., Hérique, A., Ulamec, S., Carnelli, I., Galvez, A., Benner, L.A.M., Naidu, S.P., Barnouin, O.S., Richardson, D.C., Rivkin, A.S., Scheirich, P., Moskovitz, N., Thirouin, A., Schwartz, S.R., Campo Bagatín, A., Yu, Y.: Science case for the Asteroid Impact Mission (AIM): a component of the Asteroid Impact & Deflection Assessment (AIDA) mission. Adv. Space Res. 57, 2529–2547 (2016)ADSCrossRefGoogle Scholar
  55. Michel, P., Cheng, A., Ulamec, S.: The AIDA Team: Asteroid Impact and Deflection Assessment (AIDA) mission: science return and mitigation relevance. In: 4th IAA Planetary Defense Conference IAA-PDC-15, 1–3 (2015a)Google Scholar
  56. Michel, P., Richardson, D.C., Durda, D.D., Jutzi, M., Asphaug, E.: Collisional formation and modeling of asteroid families. In: Michel, P., DeMeo, F.E., Bottke Jr., W.F. (eds.) Asteroids IV, p. 785. University of Arizona Press, Tucson (2015b)CrossRefGoogle Scholar
  57. Milani, A., Chesley, S., Chodas, P.W., Valsecchi, G.B.: Asteroid close approaches: analysis and potential impact detection. In: Asteroids III, pp. 55–69 (2002)Google Scholar
  58. Miyamoto, M., Ohsumi, K.: Micro Raman spectroscopy of olivines in L6 chondrites: evaluation of the degree of shock. Geophys. Res. Lett. 22, 437–440 (1995)ADSCrossRefGoogle Scholar
  59. Morbidelli, A., Nesvorný, D.: Numerous weak resonances drive asteroids toward terrestrial planets orbits. Icarus 139, 295–308 (1999)ADSCrossRefGoogle Scholar
  60. Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M.: New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015)ADSCrossRefGoogle Scholar
  61. Moyano-Cambero, C.E., Trigo-Rodríguez, J.M., Llorca, J.: UV-NIR spectra of the most reflective carbonaceous chondrite groups: CH, CR and R. In: 44th Lunar and Planetary Science Conference. Abstract 1533 (2013)Google Scholar
  62. Moyano-Cambero, C.E., Pellicer, E., Trigo-Rodríguez, J.M., Williams, I.P., Blum, J., Michel, P., Küppers, M., Martínez-Jiménez, M., Lloro, I., Sort, J.: Nanoindenting the Chelyabinsk meteorite to learn about impact deflection effects in asteroids. Ap. J. (2017)Google Scholar
  63. Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M.E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S.A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M., Kawaguchi, J.: Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011)ADSCrossRefGoogle Scholar
  64. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)ADSCrossRefGoogle Scholar
  65. Ozawa, S., Miyahara, M., Ohtani, E., Koroleva, O.N., Ito, Y., Litasov, K.D., Pokhilenko, N.P.: Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body. Sci. Rep. 4, 5033 (2014)ADSCrossRefGoogle Scholar
  66. Paton, M., Muinonen, K., Pesonen, L.J., Kuosmanen, V., Kohout, T., Laitinen, J., Lehtinen, M.: A PCA study to determine how features in meteorite reflectance spectra vary with the samples’ physical properties. J. Quant. Spectrosc. Radiat. Transf. 112, 1803–1814 (2011)ADSCrossRefGoogle Scholar
  67. Pellicer, E., Pané, S., Panagiotopoulou, V., Fusco, S., Sivaraman, K.M., Suriñach, S., Baró, M.D., Nelson, B.J., Sort, J.: Localized electrochemical deposition of porous Cu-Ni microcolumns: insights into the growth mechanisms and the mechanical performance. Int. J. Electrochem. Sci. 7, 4014–4029 (2012)Google Scholar
  68. Pieters, C.M., McFadden, L.A.: Meteorite and asteroid reflectance spectroscopy: clues to early solar system processes. Annu. Rev. Earth Planet. Sci. 22, 457–497 (1994)ADSCrossRefGoogle Scholar
  69. Pieters, C.M., Taylor, L.A., Noble, S.K., Keller, L.P., Hapke, B.W., Morris, R.V., Allen, C.C., McKay, D.S., Wentworth, S.J.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35(5), 1101–1107 (2000). http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2000.tb01496.x ADSCrossRefGoogle Scholar
  70. Popova, O.P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., Grokhovsky, V.I., Badyukov, D.D., Yin, Q.-Z., Gural, P.S., Albers, J., Granvik, M., Evers, L.G., Kuiper, J., Kharlamov, V., Solovyov, A., Rusakov, Y.S.: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 342(6162), 1069–1073 (2013)ADSCrossRefGoogle Scholar
  71. Pravec, P., Scheirich, P., Kušnirák, P., Šarounová, L., Mottola, S., Hahn, G., Brown, P., Esquerdo, G., Kaiser, N., Krzeminski, Z., Pray, D.P., Warner, B.D., Harris, A.W., Nolan, M.C., Howell, E.S., Benner, L.A.M., Margot, J.L., Galád, A., Holliday, W., Hicks, M.D., Krugly, Y.N., Tholen, D., Whiteley, R., Marchis, F., DeGraff, D.R., Grauer, A., Larson, S., Velichko, F.P., Cooney, W.R., Stephens, R., Zhu, J., Kirsch, K., Dyvig, R., Snyder, L., Reddy, V., Moore, S., Gajdoš, Š., Világi, J., Masi, G., Higgins, D., Funkhouser, G., Knight, B., Slivan, S., Behrend, R., Grenon, M., Burki, G., Roy, R., Demeautis, C., Matter, D., Waelchli, N., Revaz, Y., Klotz, A., Rieugné, M., Thierry, P., Cotrez, V., Brunetto, L., Kober, G.: Photometric survey of binary near-Earth asteroids. Icarus 181, 63–93 (2006)ADSCrossRefGoogle Scholar
  72. Righter, K., Abell, P.A., Agresti, D., Berger, E.L., Burton, A.S., Delaney, J.S., Fries, M.D., Gibson, E.K., Haba, M.K., Harrington, R., Herzog, G.F., Keller, L.P., Locke, D., Lindsay, F.N., McCoy, T.J., Morris, R.V., Nagao, K., Nakamura-Messenger, K., Niles, P.B., Nyquist, L.E., Park, J., Peng, Z.X., Shih, C.-Y., Simon, J.I., Swisher, C.C., Tappa, M.J., Turrin, B.D., Zeigler, R.A.: Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body. Meteorit. Planet. Sci. 50, 1790–1819 (2015)ADSCrossRefGoogle Scholar
  73. Rivkin, A.S., Binzel, R.P., Sunshine, J.M., Bus, S.J., Burbine, T.H., Saxena, A.: Infrared spectroscopic observations of 69230 Hermes (1937 UB): possible unweathered endmember among ordinary chondrite analogs. Icarus 172, 408–414 (2004)ADSCrossRefGoogle Scholar
  74. Ruzicka, A., Grossman, J.N., Bouvier, A., Herd, C.D.K., Agee, C.B.: The meteoritical bulletin, no. 102. Meteorit. Planet. Sci. 50(9), 1662 (2015)ADSCrossRefGoogle Scholar
  75. Stöffler, D., Keil, K., Scott, E.R.D.: Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991)ADSCrossRefGoogle Scholar
  76. Subhash, G., Koeppel, B.J., Chandra, A.: Dynamic indentation hardness and rate sensitivity in metals. J. Eng. Mater. Technol. 121, 257–263 (1999)CrossRefGoogle Scholar
  77. Tapia, M., Trigo-Rodríguez, J.M.: Natural hazard associated to shock waves of meter-sized meteoroids. In: Trigo-Rodríguez, J.M., Gritsevich, M., Palme H. (eds.) Assessment and Mitigation of Asteroid Impact Hazards, pp. 199–217. Springer, New York (2017)Google Scholar
  78. Trigo-Rodríguez, J.M., Blum, J.: The effect of aqueous alteration and metamorphism in the survival of presolar silicate grains in chondrites. Publ. Astron. Soc. Aust. 26, 289–296 (2009)ADSCrossRefGoogle Scholar
  79. Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V.: Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Mon. Not. R. Astron. Soc. 449, 2119–2127 (2015)ADSCrossRefGoogle Scholar
  80. Trigo-Rodríguez, J.M., Lyytinen, E., Jones, D.C., Madiedo, J.M., Castro-Tirado, A.J., Williams, I., Llorca, J., Vítek, S., Jelínek, M., Troughton, B., Gálvez, F.: Asteroid 2002NY40 as a source of meteorite-dropping bolides. Mon. Not. Roy Astron. Soc. 382, 1933–1939 (2007)ADSCrossRefGoogle Scholar
  81. Trigo-Rodríguez, J.M., Moyano-Cambero, C.E., Llorca, J., Fornasier, S., Barucci, M.A., Belskaya, I., Martins, Z., Rivkin, A.S., Dotto, E., Madiedo, J.M., Alonso-Azcárate, J.: UV to far-IR reflectance spectra of carbonaceous chondrites—I. Implications for remote characterization of dark primitive asteroids targeted by sample-return missions. Mon. Not. Roy Astron. Soc. 437, 227–240 (2014a)ADSCrossRefGoogle Scholar
  82. Trigo-Rodríguez, J.M., Moyano-Cambero, C.E., Mestres, N., Bischoff, A.: A Raman Study of Chelyabinsk LL5-6 Chondrite Breccia: Investigating the Signatures of Shock-Induced Melting in Near-Earth Asteroids. In: 45th Lunar and Planetary Science Conference. Abstract 1729Google Scholar
  83. Trigo-Rodríguez, J.M., Williams, I.P.: Dynamic sources of contemporary hazard from meteoroids and small asteroids. In: Trigo-Rodríguez J.M., Gritsevich, M., Palme H. (eds.) Assessment and Mitigation of Asteroid Impact Hazards, pp. 11–32. Springer, New York (2017)Google Scholar
  84. Wachs, I.E., Routray, K.: Catalysis science of bulk mixed oxides. ACS Catal. 2, 1235–1246 (2012)CrossRefGoogle Scholar
  85. Walsh, K.J., Richardson, D.C.: Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180, 201–216 (2006)ADSCrossRefGoogle Scholar
  86. Weissman, P.R., Hicks, M.D., Abell, P.A., Choi, Y., Lowry, S.C.: Rosetta target asteroid 2867 Steins: an unusual E-type asteroid. Meteorit. Planet. Sci. 914, 905–914 (2008)ADSCrossRefGoogle Scholar
  87. Xie, X., Chen, M., Dai, C., El Goresy, A., Gillet, P.: A comparative study of naturally and experimentally shocked chondrites. Earth Planet. Sci. Lett. 187, 345–356 (2001)ADSCrossRefGoogle Scholar
  88. Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J., Fei, Y.: Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochim. Cosmochim. Acta 66, 2439–2444 (2002)ADSCrossRefGoogle Scholar
  89. Zolensky, M., Herrin, J., Mikouchi, T., Ohsumi, K., Friedrich, J., Steele, A., Rumble, D., Fries, M., Sandford, S., Milam, S., Hagiya, K., Takeda, H., Satake, W., Kurihara, T., Colbert, M., Hanna, R., Maisano, J., Ketcham, R., Goodrich, C., Le, L., Robinson, G., Martinez, J., Ross, K., Jenniskens, P., Shaddad, M.H.: Mineralogy and petrography of the Almahata Sitta ureilite. Meteorit. Planet. Sci. 45, 1618–1637 (2010)ADSCrossRefGoogle Scholar
  90. Zolensky, M.E., Ivanov, A.: The Kaidun microbreccia meteorite: a harvest from the inner and outer asteroid belt. Chem. Erde-Geochem. 63, 185–246 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Carles E. Moyano-Cambero
    • 1
  • Josep M. Trigo-Rodríguez
    • 1
  • Eva Pellicer
    • 2
  • Marina Martínez-Jiménez
    • 1
  • Jordi Llorca
    • 3
    • 4
  • Narcís Metres
    • 5
  • Jordi Sort
    • 2
    • 6
  1. 1.Minor Bodies and Planetary Sciences GroupInstitute of Space Sciences (IEEC-CSIC)BarcelonaSpain
  2. 2.Departament de FísicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Institute of Energy Technologies, Universitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Center for Research in NanoEngineering,Universitat Politècnica de CatalunyaBarcelonaSpain
  5. 5.Institut de Ciència de Materials de Barcelona, ICMAB-CSICBarcelonaSpain
  6. 6.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations