Skip to main content

Personalized and Adaptive Serious Games

  • Chapter
  • First Online:
Entertainment Computing and Serious Games

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9970))

Abstract

Personalization and adaptivity can promote motivated usage, increased user acceptance, and user identification in serious games. This applies to heterogeneous user groups in particular, since they can benefit from customized experiences that respond to the individual traits of the players. In the context of games, adaptivity describes the automatic adaptation of game elements, i.e., of content, user interfaces, game mechanics, game difficulty, etc., to customize or personalize the interactive experience. Adaptation processes follow an adaptive cycle, changing a deployed system to the needs of its users. They can work with various techniques ranging from simple threshold-based parameter adjustment heuristics to complex evolving user models that are continuously updated over time. This chapter provides readers with an understanding of the motivation behind using adaptive techniques in serious games and presents the core challenges around designing and implementing such systems. Examples of how adaptability and adaptivity may be put into practice in specific application scenarios, such as motion-based games for health, or personalized learning games, are presented to illustrate approaches to the aforementioned challenges. We close with a discussion of the major open questions and avenues for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Whilst this “But if you judge a fish...” saying is often quoted as originating from famous physicist Albert Einstein, there is no substantive evidence that Einstein really made this statement [68].

References

  1. Adams, E.: Fundamentals of Game Design. New Riders, San Francisco (2010)

    Google Scholar 

  2. Adams, R., Comley, R., Ghoreyshi, M.: The potential of the BCI for accessible and smart e-learning. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5615, pp. 467–476. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Advanced Distributed Learning (ADL): Experience API (xAPI) Specification, Version 1.0.1. Technical report, Advanced Distributed Learning (ADL) Initiative, U.S. Department of Defense (2013)

    Google Scholar 

  4. Alankus, G., Proffitt, R., Kelleher, C., Engsberg, J.: Stroke therapy through motion-based games: a case study. In: ASSETS 2010, pp. 219–226 (2010)

    Google Scholar 

  5. Allen, B.: Information Tasks: Toward a User-Centered Approach to Information Systems, 1st edn. Academic Press Inc., Orlando (1996)

    Google Scholar 

  6. Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Extending reinforcement learning to provide dynamic game balancing. In: 19th International Joint Conference on Artificial Intelligence, Proceedings of the Workshopon Reasoning, Representation, and Learning in Computer Games, (IJCAI), pp. 7–12 (2005)

    Google Scholar 

  7. Antle, A.N., Bevans, A., Tanenbaum, J., Seaborn, K., Wang, S.: Futura: design for collaborative learning and game play on a multi-touch digital tabletop. In: Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2011, pp. 93–100. ACM, New York (2011)

    Google Scholar 

  8. Anwar, M.M., Greer, J., Brooks, C.A.: Privacy enhanced personalization in e-learning. In: Proceedings of the 2006 International Conference on Privacy Security and Trust Bridge the Gap Between PST Technologies and Business Services PST 2006, p. 1 (2006)

    Google Scholar 

  9. Assad, O., et al.: Motion-based games for parkinson’s disease patients. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M., Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 47–58. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24500-8_6

    Chapter  Google Scholar 

  10. Atkins, D.E., Brown, J.S., Hammond, A.L.: A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities. Creative Common, Mountain View (2007)

    Google Scholar 

  11. Bakkes, S., Tan, C.T., Pisan, Y.: Personalised gaming. In: Proceedings of the 8th Australasian Conference on Interactive Entertainment Playing the System -IE 2012, pp. 1–10. ACM, New York (2012)

    Google Scholar 

  12. Barzilay, O., Wolf, A.: Adaptive rehabilitation games. J. Electromyogr. Kinesiol. Official J. Int. Soc. Electrophysiol. Kinesiol. 23(1), 182–189 (2013)

    Article  Google Scholar 

  13. Bauer, F., Kaltenböck, M.: Linked Open Data: The Essentials. Editionmono/monochrom, Vienna (2011)

    Google Scholar 

  14. Blakemore, S.J., Frith, U.: The learning brain: lessons for education: aprécis. Dev. Sci. 8(6), 459–465 (2005)

    Article  Google Scholar 

  15. Bloom, B.S.: Taxonomy of Educational Objectives, vol. 16. Longmans, Green, New York (1956)

    Google Scholar 

  16. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Model. User-Adapt. Interact. J. Personalization Res. 6(2–3), 87–129 (1996)

    Article  MATH  Google Scholar 

  17. Champandard, A.J.: Top 10 most influential AI games (2007). http://aigamedev.com/open/highlights/top-ai-games/

  18. Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)

    Article  Google Scholar 

  19. Chiou, A., Wong, K.W.: Player adaptive entertainment computing (PAEC): mechanism to model user satisfaction by using neuro linguistic programming(NLP) techniques. In: IEEE Symposium On Computational Intelligence and Games, CIG 2008, pp. 343–349 (2008)

    Google Scholar 

  20. Conati, C., Manske, M.: Evaluating adaptive feedback in an educational computer game. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS (LNAI), pp. 146–158. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04380-2_18

    Chapter  Google Scholar 

  21. Corne, B.: Making existing educational games adaptive using AOP. Master thesis, Vrije Universiteit Brussel (2013). http://wise.vub.ac.be/content/making-existing-educational-games-adaptive-using-aop

  22. Cowley, B., Charles, D., Black, M., Hickey, R.: Toward an understanding of flow in video games. Comput. Entertainment (CIE) 6(2), 1–27 (2008)

    Article  Google Scholar 

  23. Crawford, C.: The Art of Computer Game Design. Osborne/McGraw-Hill, New York (1984)

    Google Scholar 

  24. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper & Row, New York (1990)

    Google Scholar 

  25. D’Aquin, M., Adamou, A., Dietze, S.: Assessing the educational linked data landscape. In: ACM Web Science 2013 (2013)

    Google Scholar 

  26. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results. Ph.D. thesis (1985)

    Google Scholar 

  27. Deci, E.L., Eghrari, H., Patrick, B.C., Leone, D.R.: Facilitating internalization: the self-determination theory perspective. J. Person. 62(1), 119–142 (1994)

    Article  Google Scholar 

  28. Drachen, A., Canossa, A., Yannakakis, G.N.: Player modeling using self-organization in Tomb Raider: underworld. In: IEEE Symposium on Computational Intelligence and Games, CIG 2009, pp. 1–8 (2009)

    Google Scholar 

  29. El-Khatib, K., Korba, L., Xu, Y., Yee, G.: Privacy and security in e-learning. Int. J. Distance Educ. Technol. 1(4), 1–19 (2003)

    Article  Google Scholar 

  30. Eliëns, A., Ruttkay, Z.: Record, replay & reflect - a framework for understanding (serious) game play. In: Proceedings of Euromedia, vol. 9 (2008)

    Google Scholar 

  31. Fischer, G.: User modeling in human-computer interaction. User Model. User-Adapt. Interact. 11, 65–86 (2001)

    Article  MATH  Google Scholar 

  32. Fogg, B.J.: A behavior model for persuasive design. In: Proceedings of the 4th International Conference on Persuasive Technology, Persuasive 2009, pp. 40: 1–40: 7. ACM, New York (2009)

    Google Scholar 

  33. Fraunhofer, I.: Lost Earth 2307 (2016). http://www.iosb.fraunhofer.de/servlet/is/58015/

  34. Fullerton, T., Swain, C., Hoffman, S.: Game Design Workshop: Designing, Prototyping, and Playtesting Games. Focal Press, Waltham (2004)

    Google Scholar 

  35. Gerling, K.M., Miller, M., Mandryk, R.L., Birk, M.V., Smeddinck, J.D.: Effects of balancing for physical abilities on player performance, experience and self-esteem in exer games. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 2201–2210. ACM, New York (2014)

    Google Scholar 

  36. Gerling, K.M., Schulte, F.P., Smeddinck, J., Masuch, M.: Game design for older adults: effects of age-related changes on structural elements of digital games. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 235–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33542-6_20

    Chapter  Google Scholar 

  37. Göbel, S., Mehm, F., Radke, S., Steinmetz, R.: 80days: adaptive digital storytelling for digital educational games. In: Proceedings of the 2nd International Workshop on Story-Telling and Educational Games (STEG 2009), vol. 498 (2009)

    Google Scholar 

  38. Göbel, S., Hardy, S., Wendel, V., Mehm, F., Steinmetz, R.: Serious games for health: personalized exer games. In: Proceedings of the International Conference on Multimedia, MM 2010, NY, USA, pp. 1663–1666 (2010)

    Google Scholar 

  39. Göbel, S., Wendel, V., Ritter, C., Steinmetz, R.: Personalized, adaptive digital educational games using narrative game-based learning objects. In: Zhang, X., Zhong, S., Pan, Z., Wong, K., Yun, R. (eds.) Edutainment 2010. LNCS, vol. 6249, pp. 438–445. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14533-9_45

    Chapter  Google Scholar 

  40. Gómez-Martín, M.A., Gómez-Martín, P.P., González-Calero, P.A.: Game-driven intelligent tutoring systems. In: Rauterberg, M. (ed.) ICEC 2004. LNCS, vol. 3166, pp. 108–113. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28643-1_14

    Chapter  Google Scholar 

  41. Gunderson, L.H., Holling, C.S.: Panarchy: Understanding Transformations in Systems of Humans and Nature. Island Press, Washington (2002)

    Google Scholar 

  42. Hartson, R., Pyla, P.: The UX Book: Process and Guidelines for Ensuring a Quality User Experience, 1st edn. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  43. Hernandez, H.A., Graham, T.C., Fehlings, D., Switzer, L., Ye, Z., Bellay, Q., Hamza, M.A., Savery, C., Stach, T.: Design of an exer gaming station for children with cerebral palsy. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 2619–2628 (2012)

    Google Scholar 

  44. Hocine, N., Gouaïch, A., Cerri, S.A.: Dynamic difficulty adaptation in serious games for motor rehabilitation. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, vol. 8395, pp. 115–128. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05972-3_13

    Chapter  Google Scholar 

  45. Howell, S., Veale, T.: Dynamic difficulty adjustment in game-based intelligent tutoring systems. In: Cgames 2006 Proceedings of the 9th International Conferenceon Computer Games Artificial Intelligence and Mobile Systems, pp. 201–204 (2006)

    Google Scholar 

  46. Huizinga, J.: Homo ludens: proeve eener bepaling van hetspel-element der cultuur. Amsterdam University Press, Amsterdam (2008)

    Book  Google Scholar 

  47. Hunicke, R.: The case for dynamic difficulty adjustment in games. In:Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE 2005, pp. 429–433. ACM, New York (2005)

    Google Scholar 

  48. IEEE Learning Technology Standards Committee: IEEE standard for learning object metadata. IEEE Stand. 1484(1), 2004–2007 (2002)

    Google Scholar 

  49. Janssen, C.P., Van Rijn, H., Van Liempd, G., der Pompe, G.: User modeling for training recommendation in a depression prevention game. In: Proceedings of the First NSVKI Student Conference, pp. 29–35 (2007)

    Google Scholar 

  50. Johnson, W.L., Wang, N., Wu, S.: Experience with serious games for learning foreign languages and cultures. In: Proceedings of the SimTecT Conference(2007)

    Google Scholar 

  51. Kickmeier-Rust, M.D., Albert, D.: Educationally adaptive: balancing serious games. Int. J. Comput. Sci. Sport 11, 15–28 (2012)

    Google Scholar 

  52. Kickmeier-Rust, M.D., Hillemann, E., Albert, D.: Tracking the UFO’s paths: using eye-tracking for the evaluation of serious games. In: Shumaker, R. (ed.) VMR 2011. LNCS, vol. 6773, pp. 315–324. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22021-0_35

    Chapter  Google Scholar 

  53. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image Net Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems, pp. 1–9 (2012)

    Google Scholar 

  54. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cogn. Syst. Res. 10(2), 141–160 (2009)

    Article  Google Scholar 

  55. Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: a survey. IEEE Trans. Comput. Intell. AI Games 3(2), 85–99 (2011)

    Article  Google Scholar 

  56. Magerko, B.: Adaptation in digital games. Computer 41(6), 87–89 (2008)

    Article  Google Scholar 

  57. Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., Grant, S., Changeux, J.P., Saria, A.: Introducing the human brain project. Procedia Comput. Sci. 7, 39–42 (2011)

    Article  Google Scholar 

  58. Mateas, M., Stern, A.: Build it to understand it: ludology meets narratology in game design space. In: DiGRA Conference Vancouver BC, pp. 16–20 (2005)

    Google Scholar 

  59. Millington, I., Funge, J.: Artificial Intelligence for Games. CRC Press, Boston (2009)

    Google Scholar 

  60. Murphy-Hill, E., Murphy, G.C.: Recommendation delivery. In: Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineering, pp. 223–242. Springer, Berlin, Heidelberg (2014)

    Chapter  Google Scholar 

  61. Murray, M.: Façade review (2005). http://brasslantern.org/reviews/graphic/facademurray.html

  62. Nacke, L.: Affective ludology: scientific measurement of user experience in interactive entertainment Technology, p. 327 (2009)

    Google Scholar 

  63. Niehaus, J., Riedl, M.O.: Scenario adaptation: an approach to customizing computer-based training games and simulations. In: Proceedings of the AIED2009 Workshop on Intelligent Educational Games, vol. 3, pp. 89–98 (2009)

    Google Scholar 

  64. Niemann, K., Scheffel, M., Wolpers, M.: An overview of usage data formats for recommendations in TEL. In: CEUR Workshop Proceedings, vol. 896, pp. 95–100 (2012)

    Google Scholar 

  65. Nilsagård, Y.E., Forsberg, A.S., von Koch, L.: Balance exercise for persons with multiple sclerosis using wii games: a randomised, controlled multi-centre study. Multiple Sclerosis J. 19(2), 209–216 (2013)

    Article  Google Scholar 

  66. Noseworthy, J.R.: The test and training enabling architecture (TENA) supporting the decentralized development of distributed applications and lvc simulations. In: 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, DS-RT 2008, pp. 259–268 (2008)

    Google Scholar 

  67. Oijen, J., Vanhée, L., Dignum, F.: CIGA: a middleware for intelligent agents in virtual environments. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.) AEGS 2011. LNCS (LNAI), vol. 7471, pp. 22–37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32326-3_2

    Chapter  Google Scholar 

  68. O’Toole, G.: QuoteInvestigator.com: Did einstein really saythat? (2013). http://quoteinvestigator.com/2013/04/06/fish-climb/

  69. Pagulayan, R.J., Keeker, K., Fuller, T., Wixon, D., Romero, R.L., Gunn, D.V.: User-centered design in games. In: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, pp. 795–824 (2012)

    Google Scholar 

  70. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. Publ. IEEE Syst. Man Cybern. Soc. 30(3), 286–297 (2000)

    Article  Google Scholar 

  71. Peirce, N., Conlan, O., Wade, V.: Adaptive educational games: providing non-invasive personalised learning experiences. In: 2008 Second IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, pp. 28–35. IEEE (2008)

    Google Scholar 

  72. Petty, R.E., Cacioppo, J.T.: Issue involvement can increase or decrease persuasion by enhancing message-relevant cognitive responses. J. Person. Soc. Psychol. 37(10), 1915–1926 (1979)

    Article  Google Scholar 

  73. Rigby, S., Ryan, R.: Glued to Games: How Video Games Draw Us in and Hold Us Spell bound. Praeger, Westport (2011)

    Google Scholar 

  74. Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects, vol. 12. Routledge, Abingdon (2009)

    Google Scholar 

  75. Roller, W., Berger, A., Szentes, D.: Technology based training for radar image interpreters. In: 2013 6th International Conference on Recent Advances inSpace Technologies (RAST), pp. 1173–1177. IEEE (2013)

    Google Scholar 

  76. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2009)

    MATH  Google Scholar 

  77. Sawyer, B.: From cells to cell processors: the integration of health and videogames. IEEE Comput. Graph. Appl. 28(6), 83–85 (2008)

    Article  Google Scholar 

  78. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. CRC Press, Boston (1993)

    Google Scholar 

  79. Sheridan, T.B.: Rumination on Automation, 1998. Ann. Rev. Control 25, 89–97 (2001)

    Article  Google Scholar 

  80. Shute, V., Zapata-Rivera, D.: Adaptive educational systems. Adapt. Technol. Train. Educ. 7(1), 1–35 (2012)

    Google Scholar 

  81. Smeddinck, J., Herrlich, M., Krause, M., Gerling, K., Malaka, R.: Did they really like the game? - challenges in evaluating exergames with older adults. In: CHI Workshop on Game User Research: Exploring Methodologies, Austin, Texas, USA (2012)

    Google Scholar 

  82. Smeddinck, J., Siegel, S., Herrlich, M.: Adaptive difficulty in exer games for parkinson’s disease patients. In: Proceedings of Graphics Interface 2013, Regina, SK, Canada (2013)

    Google Scholar 

  83. Smeddinck, J.D., Gerling, K.M., Malaka, R.: Anpassbare Computerspiele fÃijr Senioren. Informatik-Spektrum 37(6), 575–579 (2014)

    Article  Google Scholar 

  84. Smeddinck, J.D., Herrlich, M., Malaka, R.: Exergames for physiotherapy and rehabilitation: a medium-term situated study of motivational aspects and impact on functional reach. In: Proceedings of the 33rd Annual ACMConference on Human Factors in Computing Systems, CHI 2015, pp. 4143–4146. ACM, New York (2015)

    Google Scholar 

  85. Smeddinck, J.D., Hey, J., Runge, N., Herrlich, M., Jacobsen, C., Wolters, J., Malaka, R.: MoviTouch: mobile movement capability configurations. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS 2015, pp. 389–390. ACM, New York (2015)

    Google Scholar 

  86. Smeddinck, J.D., Mandryk, R., Birk, M., Gerling, K., Barsilowski, D., Malaka, R.: How to present game difficulty choices? exploring the impact on player experience. In: Proceedings of the 34th Annual ACM Conference on Human Factors in Computing Systems, CHI 2016. ACM, New York (2016)

    Google Scholar 

  87. Streicher, A., Dambier, N., Roller, W.: Task-centered selection of learning material. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 4, 267–274 (2012)

    Google Scholar 

  88. Streicher, A., Roller, W.: Towards an inter operable adaptive tutoring agent for simulations and serious games. In: Abraham, A.P., dos Reis, A.P., Roth, J. (eds.) International Conference on Theory and Practice in Modern Computing, MCCSIS 2015, pp. 194–197. IADIS Press, Las Palmas (2015)

    Google Scholar 

  89. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Comput. Entertainment 3, 1–24 (2005)

    Article  Google Scholar 

  90. Teng, C.I.: Customization, immersion satisfaction, and online gamer loyalty. Comput. Hum. Behav. 26(6), 1547–1554 (2010)

    Article  Google Scholar 

  91. Torrente, J., Moreno-Ger, P., Fernandez-Manjon, B.: Learning models for the integration of adaptive educational games in virtual learning environments. In: Pan, Z., Zhang, X., Rhalibi, A., Woo, W., Li, Y. (eds.) Edutainment 2008. LNCS, vol. 5093, pp. 463–474. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69736-7_50

    Chapter  Google Scholar 

  92. Van Eck, R.: Building artificially intelligent learning games. In: Gibson, D., Aldrich, C., Prensky, M. (eds.) Games and Simulations in Online Learning: Research and Development Frameworks, pp. 271–307. IGI Global, Hershey (2007)

    Google Scholar 

  93. Vicencio-Moreira, R., Mandryk, R.L., Gutwin, C., Bateman, S.: The effectiveness (or lack thereof) of aim-assist techniques in first-person shooter games. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 937–946. ACM, New York (2014)

    Google Scholar 

  94. Walonoski, J.A., Heffernan, N.T.: Detection and analysis of off-task gaming behavior in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 382–391. Springer, Heidelberg (2006). doi:10.1007/11774303_38

    Chapter  Google Scholar 

  95. Wong, K.: Adaptive computer game system using artificial neural networks. In: Neural Information Processing, pp. 675–682 (2008)

    Google Scholar 

  96. Woolf, B.P.: Building Intelligent Interactive Tutors. Morgan Kaufmann, Burlington (2009)

    Google Scholar 

  97. Yusoff, A., Crowder, R., Gilbert, L.: Validation of serious games attributes using the technology acceptance model. In: 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 45–51, March 2010

    Google Scholar 

  98. Zarraonandía, T., Díaz, P., Aedo, I.: Modeling games for adaptive and personalized learning. In: Gros, B., Kinshuk, K., Maina, M. (eds.) The Future of Ubiquitous Learning, pp. 217–239. Springer, Berlin (2016)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Streicher .

Editor information

Editors and Affiliations

Further Reading

Further Reading

  • Van Eck, Richard. 2007. Building Artificially Intelligent Learning Games. In Games and Simulations in Online Learning: Research and Development Frameworks, edited by David Gibson, Clark Aldrich, and Marc Prensky, 271– 307. Hershey, PA, USA: IGI Global [92].

    This book chapter describes how to construct intelligent learning games based on theories and technologies in education, instructional design, artificial intelligence, and cognitive psychology.

  • Millington, Ian, and Funge, John. 2009. Artificial Intelligence for Games. CRC Press [59].

    This book on game A.I. development explains numerous A.I. examples from real games in detail. Furthermore it introduces many techniques little used by game developers today which could also be advantageous for adaptive games.

  • Ritterfeld, U., Cody, M., and Vorderer, P. 2009. Serious Games: Mechanisms and Effects. Defence Management Journal. Volume 12 [74].

    This book gives a general academic overview on the mechanisms and effects of serious games which should be considered when designing concepts for adaptive games.

  • Bakkes, S., Tan, C. T., and Pisan, Y. 2012. Personalised gaming. In Proceedings of The 8th Australasian Conference on Interactive Entertainment Playing the System [11].

    This conference paper addresses multiple aspects regarding the motivation for personalized gaming, supported by an extensive overview of the scientific literature.

  • Zarraonandía, T., Díaz, P., and Aedo, I. 2016. Modeling Games for Adaptive and Personalized Learning. In The Future of Ubiquitous Learning: Learning Designs for Emerging Pedagogies. Springer Berlin Heidelberg [98].

    This book section deals with the inter-disciplinary challenges when designing adaptive educational games, and it presents a conceptual model for flexible game designs.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Streicher, A., Smeddinck, J.D. (2016). Personalized and Adaptive Serious Games. In: Dörner, R., Göbel, S., Kickmeier-Rust, M., Masuch, M., Zweig, K. (eds) Entertainment Computing and Serious Games. Lecture Notes in Computer Science(), vol 9970. Springer, Cham. https://doi.org/10.1007/978-3-319-46152-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46152-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46151-9

  • Online ISBN: 978-3-319-46152-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics