Advertisement

Games for Health

  • Jan D. SmeddinckEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9970)

Abstract

Health is an elementary foundation of prosperous human life. Average human life expectancy has never been as long as it is today and medical advances have greatly improved overall population health. However, modern societies are burdened by new complications in the form of lifestyle diseases which arise due to various aspects of modern life, such as sedentary behavior. The pressure on public health systems is ever increasing with the emergence of further complex and expensive treatment options, and due to the complications resulting from demographic change. The technological advancements of the industrial and information age, the computational revolution in general, and video games for entertainment specifically contribute to the prevalence of some prevalent lifestyle-related health issues. At the same time, computing devices and interactive applications also play an important role in improving all areas of individual and public health. Recent research and early commercial releases deliver convincing evidence that playful applications and games for health in particular offer approaches that can help overcome the motivational barriers which often restrain successful health treatments or preventive actions and behavior. This chapter provides an overview of the arguments that motivate the application of play and game techniques for personal and public health. It summarizes the basic promises and challenges of games for health research and development, provides starting points regarding their design and implementation, illustrates selected aspects along the lines of exemplary applications, and hints at pressing open challenges as well as promising avenues for further research and developments. A selection of quality references for further reading is included in the last section.

Keywords

Serious games Games for health Exergames Motion-based games Health Game design Game user research 

Notes

Acknowledgments

I would like to thank Stefan Göbel and Jenny Cramer for supporting the writing of this chapter. The non-external projects mentioned in this text were in part supported and in part spearheaded by the research staff and students at the Digital Media Lab at the University of Bremen as well as members of the Interaction Lab at the University of Saskatchewan. Marc Herrlich, Markus Krause, and Rainer Malaka are invaluable collaborators in this line of work. The projects were also supported by the consortium partners of the projects Spiel Dich Fit and Adaptify, as well as by the German Parkinson’s association (Deutsche Parkinson Vereinigung) Bremen. Funding was provided by the Klaus Tschira Stiftung, the GRAND NCE, as well as by the Federal Ministry of Education and Research, Germany (BMBF).

References

  1. 1.
  2. 2.
  3. 3.
    Der Heilmittelmarkt in Deutschland - Januar bis Dezember 2005. Der Heilmittelmarkt in Deutschland, Apr 2006. http://www.gkv-heilmittel.de/media/dokumente/his_statistiken/2005_04/HIS-Bericht-Bund_200504.pdf
  4. 4.
    Heilmittel-Schnellinformation - Januar bis Dezember 2015. Der Heilmittelmarkt in Deutschland, Apr 2016. http://www.gkv-heilmittel.de/media/dokumente/his_statistiken/2005_04/HIS-Bericht-Bund_200504.pdf
  5. 5.
    Adams, E.: Fundamentals of Game Design. New Riders, Berkeley (2010)Google Scholar
  6. 6.
    Alankus, G., Proffitt, R., Kelleher, C., Engsberg, J.: Stroke therapy through motion-based games?: A case study. Therapy, pp. 219–226 (2010)Google Scholar
  7. 7.
    Anderson-Hanley, C., Arciero, P.J., Brickman, A.M., Nimon, J.P., Okuma, N., Westen, S.C., Merz, M.E., Pence, B.D., Woods, J.A., Kramer, A.F., et al.: Exergaming and older adult cognition. Am. J. Prev. Med. 42(2), 109–119 (2012)CrossRefGoogle Scholar
  8. 8.
    Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Extending reinforcement learning to provide dynamic game balancing. In: Proceedings of the Workshop on Reasoning, Representation, and Learning in Computer Games, 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 7–12 (2005)Google Scholar
  9. 9.
    Andrade, G., Ramalho, G., Gomes, A.S., Corruble, V.: Dynamic game balancing: an evaluation of user satisfaction. In: AIIDE 2006, pp. 3–8 (2006)Google Scholar
  10. 10.
    Anguera, J.A., Boccanfuso, J., Rintoul, J.L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., et al.: Video game training enhances cognitive control in older adults. Nature 501(7465), 97–101 (2013)CrossRefGoogle Scholar
  11. 11.
    Assad, O., et al.: Motion-based games for parkinson’s disease patients. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M., Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 47–58. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24500-8_6 CrossRefGoogle Scholar
  12. 12.
    Bandura, A.: Self-efficacy mechanism in human agency. Am. Psychol. 37(2), 122–147 (1982)CrossRefGoogle Scholar
  13. 13.
    Bandura, A.: Guide for constructing self-efficacy scales. Self-efficacy Beliefs Adolesc. 5, 307–337 (2006)Google Scholar
  14. 14.
    Baranowski, T., Buday, R., Thompson, D.I., Baranowski, J.: Playing for real: video games and stories for health-related behavior change. Am. J. Prev. Med. 34(1), 74–82 (2008)CrossRefGoogle Scholar
  15. 15.
    Barzilay, O., Wolf, A.: Adaptive rehabilitation games. J. Electromyogr. Kinesiol. (official journal of the International Society of Electrophysiological Kinesiology) 23(1), 182–189 (2013). pMID: 23141481Google Scholar
  16. 16.
    Beale, I.L.: Video Games for Health: Principles and Strategies for Design and Evaluation. Nova Science Publishers, New York (2011)Google Scholar
  17. 17.
    Benyon, D.: Adaptive systems: a solution to usability problems. User Model. User Adap. Inter. 3(1), 65–87 (1993)CrossRefGoogle Scholar
  18. 18.
    Berkowitz, L., McCarthy, C.: Innovation with Information Technologies in Healthcare. Springer Science & Business Media, New York (2012)Google Scholar
  19. 19.
    Birk, M., Mandryk, R.L.: Control your game-self: effects of controller type on enjoyment, motivation, and personality in game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 685–694. ACM (2013)Google Scholar
  20. 20.
    Birk, M.V., Mandryk, R.L., Miller, M.K., Gerling, K.M.: How self-esteem shapes our interactions with play technologies. In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2015, pp. 35–45. ACM (2015)Google Scholar
  21. 21.
    Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of ehealth on the quality and safety of health care: a systematic overview. PLoS Med 8(1), e1000387 (2011)CrossRefGoogle Scholar
  22. 22.
    Bredl, K., Bösche, W.: Serious Games and Virtual Worlds in Education, Professional Development, and Healthcare. IGI Global, Hershey (2013)CrossRefGoogle Scholar
  23. 23.
    Brooke, J.: SUS: A “Quick and Dirty” Usability Scale, pp. 189–194. Taylor & Francis, London (1996)Google Scholar
  24. 24.
    Brooks, A.L., Brahnam, S., Jain, L.C.: Technologies of Inclusive Well-Being: Serious Games, Alternative Realities, and Play Therapy. Springer, New York (2014)CrossRefGoogle Scholar
  25. 25.
    Brox, E., Fernandez-Luque, L., Tollefsen, T.: Healthy gaming video game design to promote health. Appl. Clin. Inf. 2(2), 128–142 (2011)CrossRefGoogle Scholar
  26. 26.
    Brox, E., Hernandez, J.E.G.: Exergames for elderly: Social exergames to persuade seniors to increase physical activity. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 546–549 (2011)Google Scholar
  27. 27.
    Bruin, E., Schoene, D., Pichierri, G., Smith, S.: Use of virtual reality technique for the training of motor control in the elderly. Z. Gerontol. Geriatr. 43(4), 229–234 (2010)CrossRefGoogle Scholar
  28. 28.
    Bundesverband Interaktive Unterhaltungssoftware e.V. (2013). http://goo.gl/ge2ht2
  29. 29.
    Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Visual Comput. 25(12), 1085–1099 (2009)CrossRefGoogle Scholar
  30. 30.
    Chanel, G., Rebetez, C., Betrancourt, M., Pun, T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: Proceedings of the 12th International Conference on Entertainment and Media in the Ubiquitous Era, MindTrek 2008, pp. 13–17. ACM (2008)Google Scholar
  31. 31.
    Chang, C.Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A.A., Rizzo, A.A.: Towards pervasive physical rehabilitation using Microsoft Kinect. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 159–162. IEEE (2012)Google Scholar
  32. 32.
    Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)CrossRefGoogle Scholar
  33. 33.
    Cheng, J., Putnam, C., Rusch, D.C.: Towards efficacy-centered game design patterns for brain injury rehabilitation: A data-driven approach. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS 2015, pp. 291–299. ACM (2015)Google Scholar
  34. 34.
    Ciaramitaro, B.L.: Mobile Technology Consumption: Opportunities and Challenges: Opportunities and Challenges. IGI Global, Hershey (2011)Google Scholar
  35. 35.
    Crawford, C.: The Art of Computer Game Design. Osborne/McGraw-Hill, Berkeley (1984)Google Scholar
  36. 36.
    Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper & Row, New York (1990)Google Scholar
  37. 37.
    Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J.: Flow Flow and the Foundations of Positive Psychology, pp. 227–238. Springer, Heidelberg (2014)Google Scholar
  38. 38.
    Curtis, J., Ruijs, L., de Vries, M., Winters, R., Martens, J.B.: Rehabilitation of handwriting skills in stroke patients using interactive games: a pilot study. In: Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems. pp. 3931–3936. ACM (2009)Google Scholar
  39. 39.
    De Schutter, B., Vanden Abeele, V.: Designing meaningful play within the psycho-social context of older adults. In: Proceedings of the 3rd International Conference on Fun and Games, pp. 84–93 (2010)Google Scholar
  40. 40.
    Deci, E.L.: Effects of externally mediated rewards on intrinsic motivation. J. Pers. Soc. Psychol. 18(1), 105–115 (1971)CrossRefGoogle Scholar
  41. 41.
    Deci, E.L., Ryan, R.M.: The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychol. Inq. 11(4), 227–268 (2000)CrossRefGoogle Scholar
  42. 42.
    Denis, G., Jouvelot, P.: Motivation-driven educational game design: Applying best practices to music education. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE 2005, pp. 462–465. ACM (2005)Google Scholar
  43. 43.
    Denisova, A., Cairns, P.: The placebo effect in digital games: phantom perception of adaptive artificial intelligence. In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, pp. 23–33. ACM (2015)Google Scholar
  44. 44.
    Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “gamification”. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek 2011, pp. 9–15. ACM (2011)Google Scholar
  45. 45.
    Deutsch, J.E., Borbely, M., Filler, J., Huhn, K., Guarrera-Bowlby, P.: Use of a low-cost, commercially available gaming console (wii) for rehabilitation of an adolescent with cerebral palsy. Phy. Ther. 88(10), 1196–1207 (2008)CrossRefGoogle Scholar
  46. 46.
    Entertainment Software Association (ESA): Essential Facts About theComputer and Video Game Industry 2013 (2013). https://igea.wpengine.com/wp-content/uploads/2013/06/ESA_EF_2013.pdf
  47. 47.
    Federico Semeraro, A.F.: Relive: a serious game to learn how to save lives. Resuscitation 85(7), e109–e110 (2014)CrossRefGoogle Scholar
  48. 48.
    Fogg, B.: A behavior model for persuasive design. In: Proceedings of the 4th International Conference on Persuasive Technology, Persuasive 2009, pp. 40:1–40:7. ACM (2009)Google Scholar
  49. 49.
    Fullerton, T., Swain, C., Hoffman, S.: Game Design Workshop: Designing, Prototyping, and Playtesting Games. Focal Press, Waltham (2004)Google Scholar
  50. 50.
    Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)CrossRefGoogle Scholar
  51. 51.
    Gao, Y., Mandryk, R.L.: The acute cognitive benefits of casual exergame play, pp. 1863–1872 (2012)Google Scholar
  52. 52.
    Gekker, A.: Health games. In: Ma, M., Oliveira, M.F., Hauge, J.B., Duin, H., Thoben, K.-D. (eds.) SGDA 2012. LNCS, vol. 7528, pp. 13–30. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33687-4_2 CrossRefGoogle Scholar
  53. 53.
    Gerling, K.M., Livingston, I.J., Nacke, L.E., Mandryk, R.L.: Full-body motion-based game interaction for older adults. In: Proceedings of the 30th International Conference on Human Factors in Computing Systems, CHI 2012, pp. 1873–1882 (2012)Google Scholar
  54. 54.
    Gerling, K.: Motion-based video games for older adults in long-term care. Ph.D. thesis, University of Saskatchewan, May 2014Google Scholar
  55. 55.
    Gerling, K., Schulte, F., Masuch, M.: Designing and evaluating digital games for frail elderly persons. In: International Conference on Advances in Computer Entertainment Technology (ACE 2011), pp. 62:1–62:8. ACM (2011)Google Scholar
  56. 56.
    Gerling, K.M., Mandryk, R.L., Miller, M., Kalyn, M.R., Birk, M., Smeddinck, J.D.: Designing wheelchair-based movement games. ACM Trans. Access. Comput. 6(2), 6:1–6:23 (2015)CrossRefGoogle Scholar
  57. 57.
    Gerling, K.M., Miller, M., Mandryk, R.L., Birk, M., Smeddinck, J.: Effects of balancing for physical abilities on player performance, experience and self-esteem in exergames. In: CHI 2014: Proceedings of the 2014 CHI Conference on Human Factors in Computing Systems, pp. 2201–2210 (2014)Google Scholar
  58. 58.
    Gerling, K.M., Schulte, F.P., Smeddinck, J., Masuch, M.: Game design for older adults: effects of age-related changes on structural elements of digital games. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, pp. 235–242. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33542-6_20 CrossRefGoogle Scholar
  59. 59.
    Gerling, K.M., Smeddinck, J.: Involving users and experts in motion-based game design for older adults. In: Proceedings of the CHI Game User Research Workshop (2013)Google Scholar
  60. 60.
  61. 61.
    Giannotti, D., Patrizi, G., Di Rocco, G., Vestri, A.R., Semproni, C.P., Fiengo, L., Pontone, S., Palazzini, G., Redler, A.: Play to become a surgeon: Impact of nintendo wii training on laparoscopic skills. PLoS ONE 8(2), e57372 (2013)CrossRefGoogle Scholar
  62. 62.
    Göbel, S., Hardy, S., Wendel, V., Mehm, F., Steinmetz, R.: Serious games for health: personalized exergames. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1663–1666. ACM, aCM ID: 1874316 (2010)Google Scholar
  63. 63.
    Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Automatically recognizing facial expression: predicting engagement and frustration. In: Proceedings of the 6th International Conference on Educational Data Mining, pp. 43–50 (2013)Google Scholar
  64. 64.
    Hartson, R., Pyla, P.: The UX Book: Process and Guidelines for Ensuring a Quality User Experience, 1st edn. Morgan Kaufmann, San Diego (2012)Google Scholar
  65. 65.
    Hekler, E.B., Klasnja, P., Froehlich, J.E., Buman, M.P.: Mind the theoretical gap: interpreting, using, and developing behavioral theory in hci research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3307–3316. ACM (2013)Google Scholar
  66. 66.
    Henry, K.D., Rosemond, C., Eckert, L.B.: Effect of number of home exercises on compliance and performance in adults over 65 years of age. Phys Ther. 79(3), 270–277 (1999). pMID: 10078770Google Scholar
  67. 67.
    Hermann, R., Herrlich, M., Wenig, D., Smeddinck, J., Malaka, R.: Strong and loose cooperation in exergames for older adults with parkinson s disease. In: Boll, S., Maaß, S., Malaka, R. (eds.) Mensch & Computer Workshopband, pp. 249–254. Oldenbourg Verlag, Munich (2013)Google Scholar
  68. 68.
    Hernandez, H.A., Graham, T.C., Fehlings, D., Switzer, L., Ye, Z., Bellay, Q., Hamza, M.A., Savery, C., Stach, T.: Design of an exergaming station for children with cerebral palsy. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 2619–2628 (2012)Google Scholar
  69. 69.
    Hocine, N., Gouaich, A., Di Loreto, I., Joab, M.: Motivation based difficulty adaptation for therapeutic games. In: 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8 (2011)Google Scholar
  70. 70.
    Hocine, N., Gouaïch, A., Cerri, S.A.: Dynamic difficulty adaptation in serious games for motor rehabilitation. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, pp. 115–128. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05972-3_13 CrossRefGoogle Scholar
  71. 71.
    Hoffman, H.G., Garcia-Palacios, A., Patterson, D.R., Jensen, M., Furness, T., Ammons, W.F.: The effectiveness of virtual reality for dental pain control: a case study. Cyber Psychol. Behav. 4(4), 527–535 (2001)CrossRefGoogle Scholar
  72. 72.
    Hoffman, H.G., Patterson, D.R., Seibel, E., Soltani, M., Jewett-Leahy, L., Sharar, S.R.: Virtual reality pain control during burn wound debridement in the hydrotank. Clin. J. Pain 24(4), 299–304 (2008)CrossRefGoogle Scholar
  73. 73.
    Hoffmann, K., Wiemeyer, J., Hardy, S., Göbel, S.: Personalized adaptive control of training load in exergames from a sport-scientific perspective. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, pp. 129–140. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05972-3_14 CrossRefGoogle Scholar
  74. 74.
    Holt, R., Weightman, A., Gallagher, J., Preston, N., Levesley, M., Mon-Williams, M., Bhakta, B.: A system in the wild: deploying a two player arm rehabilitation system for children with cerebral palsy in a school environment. J. Usability Stud. 8(4), 111–126 (2013)Google Scholar
  75. 75.
    Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In: Proceedings of the fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 256–265 (1998)Google Scholar
  76. 76.
    Hunicke, R.: The case for dynamic difficulty adjustment in games. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 429–433 (2005)Google Scholar
  77. 77.
    Ice, R.: Long-term compliance. Phy. Ther. 65(12), 1832–1839 (1985). pMID: 3906687Google Scholar
  78. 78.
    Ijsselsteijn, W., Nap, H., de Kort, Y., Poels, K.: Digital game design for elderly users. In: Proceedings of the 2007 Conference on Future Play, pp. 17–22 (2007)Google Scholar
  79. 79.
    Jack, D., Boian, R., Merians, A.S., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001)CrossRefGoogle Scholar
  80. 80.
    Janssen, C.P., Van Rijn, H., Van Liempd, G., Van der Pompe, G.: User modeling for training recommendation in a depression prevention game. In: Proceedings of the First NSVKI Student Conference, pp. 29–35 (2007)Google Scholar
  81. 81.
    Jarske, H., Kolehmainen, H.: Valedo(r)motion-terapialaitteiston hyväksyminen ja käyttökelpoisuus tullinkulman työterveydessä (2013)Google Scholar
  82. 82.
    Kamel Boulos, M.N., Gammon, S., Dixon, M.C., MacRury, S.M., Fergusson, M.J., Miranda Rodrigues, F., Mourinho Baptista, T., Yang, S.P.: Digital games for type 1 and type 2 diabetes: underpinning theory with three illustrative examples. JMIR Ser. Games 3(1), e3 (2015)Google Scholar
  83. 83.
    Kato, P.M.: Video games in health care: closing the gap. Rev. Gen. Psychol. 14, 113–121 (2010)CrossRefGoogle Scholar
  84. 84.
    Kato, P.M., Cole, S.W., Bradlyn, A.S., Pollock, B.H.: A video game improves behavioral outcomes in adolescents and young adults with cancer: a randomized trial. Pediatrics 122(2), 305–317 (2008). pMID: 18676516CrossRefGoogle Scholar
  85. 85.
    Kayama, H., Okamoto, K., Nishiguchi, S., Nagai, K., Yamada, M., Aoyama, T.: Concept software based on kinect for assessing dual-task ability of elderly people. Games Health J. 1(5), 348–352 (2012)CrossRefGoogle Scholar
  86. 86.
    Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A., Wolf, S.A.: Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 4, 189 (2010). pMID: 21151782PMCID: PMC3000002CrossRefGoogle Scholar
  87. 87.
    Kessel, F., Rosenfield, P., Anderson, N.: Interdisciplinary Research. Oxford University Press, New York (2008)CrossRefGoogle Scholar
  88. 88.
    Kratzke, C., Cox, C.: Smartphone technology and apps: rapidly changing health promotion. Int. Electron. J. Health Educ. 15, 72 (2012)Google Scholar
  89. 89.
    Krichevets, A.N., Sirotkina, E.B., Yevsevicheva, I.V., Zeldin, L.M.: Computer games as a means of movement rehabilitation. Disabil. Rehabil. 17(2), 100–105 (1995)CrossRefGoogle Scholar
  90. 90.
    Kuhn, J.T., Holling, H., Raddatz, J., Dobel, C.: Meister CODY: ein computer-gestützter Test und Training für Kinder mit Dyskalkulie (2015)Google Scholar
  91. 91.
    Kuhn, J.T., Raddatz, J., Holling, H., Dobel, C.: Dyskalkulie vs. re-chenschwäche: basisnumerische verarbeitung in der grundschule. Lernen Lernstörungen 2(4), 229–247 (2013)CrossRefGoogle Scholar
  92. 92.
    Langley, P.: User modeling in adaptive interface. In: Kay, J. (ed.) UM99 User Modeling. CICMS, pp. 357–370. Springer, Heidelberg (1999). doi: 10.1007/978-3-7091-2490-1_48 CrossRefGoogle Scholar
  93. 93.
    Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89350-9_6 CrossRefGoogle Scholar
  94. 94.
    Leijdekkers, P., Gay, V.: User adoption of mobile apps for chronic disease management: a case study based on myFitnessCompanion\(^{\textregistered }\). In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.) ICOST 2012. LNCS, pp. 42–49. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30779-9_6 CrossRefGoogle Scholar
  95. 95.
    Lilla, D., Herrlich, M., Malaka, R., Krannich, D.: The influence of music on player performance in exergames for parkinson’s patients. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, pp. 433–436. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33542-6_46 CrossRefGoogle Scholar
  96. 96.
    Lindley, C.A., Sennersten, C.C.: Game play schemas: from player analysis to adaptive game mechanics. In: Proceedings of the 2006 International Conference on Game Research and Development, pp. 47–53 (2006)Google Scholar
  97. 97.
    Lister, C., West, J.H., Cannon, B., Sax, T., Brodegard, D.: Just a fad? gamification in health and fitness apps. JMIR Serious Games 2(2), e9 (2014)CrossRefGoogle Scholar
  98. 98.
    Liu, C., Agrawal, P., Sarkar, N., Chen, S.: Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. Int. J. Hum. Comput. Interact. 25(6), 506–529 (2009)CrossRefGoogle Scholar
  99. 99.
    Lomas, D., Patel, K., Forlizzi, J.L., Koedinger, K.R.: Optimizing challenge in an educational game using large-scale design experiments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 89–98. ACM (2013)Google Scholar
  100. 100.
    Luxton, D.D., McCann, R.A., Bush, N.E., Mishkind, M.C., Reger, G.M.: mhealth for mental health: Integrating smartphone technology in behavioral healthcare. Prof. Psychol. Res. Pract. 42(6), 505–512 (2011)CrossRefGoogle Scholar
  101. 101.
    Maier, M., Rubio Ballester, B., Duarte, E., Duff, A., Verschure, P.F.M.J.: Social integration of stroke patients through the multiplayer rehabilitation gaming system. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, pp. 100–114. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05972-3_12 CrossRefGoogle Scholar
  102. 102.
    Malaka, R.: How computer games can improve your health and fitness. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, pp. 1–7. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05972-3_1 CrossRefGoogle Scholar
  103. 103.
    Malaka, R., Herrlich, M., Smeddinck, J.: Anticipation in Motion-based Games for Health. Lecture Notes in Computer Science. Springer, Heidelberg (2016) (accepted)Google Scholar
  104. 104.
    McAuley, E., Duncan, T., Tammen, V.V.: Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: a confirmatory factor analysis. Res. Q. Exerc. Sport 60(1), 48–58 (1989). pMID: 2489825CrossRefGoogle Scholar
  105. 105.
    Medler, B.: Using recommendation systems to adapt game-play. Int. J. Gaming Comput. Mediat. Simul. 1(3), 68–80 (2009)CrossRefGoogle Scholar
  106. 106.
    Missura, O., Gärtner, T.: Player modeling for intelligent difficulty adjustment. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), pp. 197–211. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04747-3_17 CrossRefGoogle Scholar
  107. 107.
    Mueller, F., Vetere, F., Gibbs, M., Edge, D., Agamanolis, S., Sheridan, J., Heer, J.: Balancing exertion experiences. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 1853–1862 (2012)Google Scholar
  108. 108.
    Mueller, F., Gibbs, M.R., Vetere, F., Edge, D.: Supporting the creative game design process with exertion cards. pp. 2211–2220. ACM Press (2014)Google Scholar
  109. 109.
    Nap, H., de Kort, Y., IJsselsteijn, W.: Senior gamers: preferences, motivations and needs. Gerontechnology 8, 247–262 (2009)CrossRefGoogle Scholar
  110. 110.
    Natbony, L.R., Zimmer, A., Ivanco, L.S., Studenski, S.A., Jain, S.: Perceptions of a videogame-based dance exercise program among individuals with parkinson’s disease. Games Health J. 2(4), 235–239 (2013)CrossRefGoogle Scholar
  111. 111.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: Key issues, process model, and system features. Commun. Assoc. Inform. Syst. 24(1), 28 (2009)Google Scholar
  112. 112.
    Orji, R., Mandryk, R.L., Vassileva, J., Gerling, K.M.: Tailoring persuasive health games to gamer type. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2467–2476. ACM (2013)Google Scholar
  113. 113.
    Pichierri, G., Wolf, P., Murer, K., de Bruin, E.D.: Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC Geriatr. 11(1), 29 (2011)CrossRefGoogle Scholar
  114. 114.
    Pomeroy, V.M., Pramanik, A., Sykes, L., Richards, J., Hill, E.: Agreement between physiotherapists on quality of movement rated via videotape. Clin. Rehabil. 17(3), 264–272 (2003)CrossRefGoogle Scholar
  115. 115.
    Portland Pharmaceuticals, G.f.H.P.: Games for health projectGoogle Scholar
  116. 116.
    Prange, G.B., Jannink, M.J.A., Groothuis-Oudshoorn, C.G.M., Hermens, H.J., IJzerman, M.J.: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43(2), 171 (2006)CrossRefGoogle Scholar
  117. 117.
    Primack, B.A., Carroll, M.V., McNamara, M., Klem, M.L., King, B., Rich, M., Chan, C.W., Nayak, S.: Role of video games in improving health-related outcomes: a systematic review. Am. J. Prev. Med. 42(6), 630–638 (2012)CrossRefGoogle Scholar
  118. 118.
    Privacy Rights Clearinghouse: fact sheet 39: mobile health and fitness apps: What are the privacy risks? (2014). https://www.privacyrights.org/mobile-health-and-fitness-apps-what-are-privacy-risks
  119. 119.
    Rego, P., Moreira, P., Reis, L.: Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: 2010 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6, June 2010Google Scholar
  120. 120.
    Ricciardi, F., De Paolis, L.T., Ricciardi, F., De Paolis, L.T.: A comprehensive review of serious games in health professions. Int. J. Comput. Games Technol. 2014, e787968 (2014)CrossRefGoogle Scholar
  121. 121.
    Rigby, S.: Glued to Games: How Video Games Draw Us In and Hold Us Spellbound. Praeger, Santa Barbara (2011)Google Scholar
  122. 122.
    Rigby, S., Ryan, R.: The Player Experience of Need Satisfac-tion(PENS): an applied model and methodology for understanding key components of the player experience (2007)Google Scholar
  123. 123.
    Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games: a self-determination theory approach. Motiv. Emot. 30(4), 344–360 (2006)CrossRefGoogle Scholar
  124. 124.
    García Sánchez, R., Thin, A.G., Baalsrud Hauge, J., Fiucci, G., Nabeth, T., Rudnianski, M., Luccini, A.M., Star, K.: Value propositions for serious games in health and well-being. In: Ma, M., Oliveira, M.F., Hauge, J.B., Duin, H., Thoben, K.-D. (eds.) SGDA 2012. LNCS, pp. 150–157. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33687-4_12 CrossRefGoogle Scholar
  125. 125.
    Sawyer, B., Smith, P.: Serious games taxonomy (2008)Google Scholar
  126. 126.
    Schneider, G.: Exergames. Ph.D. thesis, Uniwien (2008)Google Scholar
  127. 127.
    Schneiders, A.G., Zusman, M., Singer, K.P.: Exercise therapy compliance in acute low back pain patients. Manual Ther. 3(3), 147–152 (1998)CrossRefGoogle Scholar
  128. 128.
    Shute, V.J., Ventura, M., Ke, F.: The power of play: the effects of portal 2 and lumosity on cognitive and noncognitive skills. Comput. Educ. 80, 58–67 (2015)CrossRefGoogle Scholar
  129. 129.
    Sinclair, J., Hingston, P., Masek, M.: Considerations for the design of exergames. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE 2007, pp. 289–295. ACM, aCM ID: 1321313 (2007)Google Scholar
  130. 130.
    Sinclair, J., Hingston, P., Masek, M.: Exergame development using the dual flow model. In: Proceedings of the Sixth Australasian Conference on Interactive Entertainment, IE 2009, pp. 11:1–11:7. ACM (2009)Google Scholar
  131. 131.
    Sluijs, E.M., Kok, G.J., van der Zee, J.: Correlates of exercise compliance in physical therapy. Phy. Ther. 73(11), 771–782 (1993). pMID: 8234458Google Scholar
  132. 132.
    Smeddinck, J., Gerling, K.M., Tiemkeo, S.: Visual complexity, player experience, performance and physical exertion in motion-based games for older adults. In: Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013, pp. 25:1–25:8. ACM (2013)Google Scholar
  133. 133.
    Smeddinck, J., Herrlich, M., Krause, M., Gerling, K., Malaka, R.: Did they really like the game? - challenges in evaluating exergames with older adults. In: Proceedings of the CHI Game User Research Workshop (2012)Google Scholar
  134. 134.
    Smeddinck, J., Siegel, S., Herrlich, M.: Adaptive difficulty in exergames for parkinson’s disease patients. In: Proceedings of the 2013 Graphics Interface Conference, GI 2013, pp. 141–148. Canadian Information Processing Society (2013)Google Scholar
  135. 135.
    Smeddinck, J.D., Gerling, K.M., Malaka, R.: Anpassbare computerspiele für senioren. Informatik-Spektrum 37(6), 575–579 (2014)CrossRefGoogle Scholar
  136. 136.
    Smeddinck, J.D., Herrlich, M., Malaka, R.: Exergames for physiotherapy and rehabilitation: a medium-term situated study of motivational aspects and impact on functional reach. In: Proceedings of CHI 2015, pp. 4143–4146. ACM (2015)Google Scholar
  137. 137.
    Smeddinck, J.D., Herrlich, M., Roll, M., Malaka, R.: Motivational effects of a gamified training analysis interface. In: Mensch & Computer 2014-Workshopband, pp. 397–404 (2014)Google Scholar
  138. 138.
    Smeddinck, J.D., Hey, J., Runge, N., Herrlich, M., Jacobsen, C., Wolters, J., Malaka, R.: Movitouch: mobile movement capability configurations. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS 2015, pp. 389–390. ACM (2015)Google Scholar
  139. 139.
    Smeddinck, J.D., Mandryk, R., Birk, M., Gerling, K., Barsilowski, D., Malaka, R.: How to present game difficulty choices? exploring the impact on player experience. In: Proceedings of the 34th Annual ACM Conference on Human Factors in Computing Systems, CHI 2016. ACM (2016, inpress)Google Scholar
  140. 140.
    Smeddinck, J.D., Voges, J., Herrlich, M., Malaka, R.: Comparing modalities for kinesiatric exercise instruction. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 2377–2382. ACM (2014)Google Scholar
  141. 141.
    Song, H., Peng, W., Lee, K.M.: Promoting exercise self-efficacy with an exergame. J. Health Commun. 16(2), 148–162 (2011). pMID: 21213171CrossRefGoogle Scholar
  142. 142.
    Springer, M., Herrlich, M., Krannich, D., Malaka, R.: Achievements in Exergames for Parkinson’s Patients. Oldenbourg Verlag, Munich (2012)Google Scholar
  143. 143.
    Staiano, A.E., Calvert, S.L.: The promise of exergames as tools to measure physical health. Entertain. Comput. 2(1), 17–21 (2011)CrossRefGoogle Scholar
  144. 144.
    Stenström, C., Arge, B., Sundbom, A.: Home exercise and compliance in inflammatory rheumatic diseases-a prospective clinical trial. J. Rheumatol. 24(3), 470–476 (1997). pMID: 9058651Google Scholar
  145. 145.
    Sundholm, M., Cheng, J., Zhou, B., Sethi, A., Lukowicz, P.: Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2014, pp. 373–382. ACM (2014)Google Scholar
  146. 146.
    Theng, Y.L., Chua, P.H., Pham, T.P.: Wii as entertainment and socialisation aids for mental and social health of the elderly. In: Proceedings of the 2012 ACM Annual Conference Extended Abstracts on Human Factors in Computing Systems Extended Abstracts, pp. 691–702. ACM (2012)Google Scholar
  147. 147.
    Thompson, D.: Designing serious video games for health behavior change: current status and future directions. J. Diab. Sci. Technol. 6(4), 807–811 (2012). pMID: 22920806PMCID: PMC3440151CrossRefGoogle Scholar
  148. 148.
    Uzor, S., Baillie, L.: Exploring & designing tools to enhance falls rehabilitation in the home. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 1233–1242. ACM (2013)Google Scholar
  149. 149.
    Uzor, S., Baillie, L.: Investigating the long-term use of exergames in the home with elderly fallers, pp. 2813–2822. ACM Press (2014)Google Scholar
  150. 150.
    VirtualRehab: VirtualRehab - Virtual rehabilitation through gaming, Sep 2014Google Scholar
  151. 151.
    Walther-Franks, B., Wenig, D., Smeddinck, J., Malaka, R.: Exercise my game: turning off-the-shelf games into exergames. In: Anacleto, J.C., Clua, E.W.G., Silva, F.S.C., Fels, S., Yang, H.S. (eds.) ICEC 2013. LNCS, pp. 126–131. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41106-9_15 CrossRefGoogle Scholar
  152. 152.
    Walther-Franks, B., Wenig, D., Smeddinck, J., Malaka, R.: Sportal: a first-person videogame turned exergame. In: Boll, S., Maaß, S., Malaka, R. (eds.) Mensch & Computer 2013 - Workshopband, pp. 539–542. Oldenbourg Verlag, Munich (2013)Google Scholar
  153. 153.
    Watcharasatharpornpong, N., Kotrajaras, V.: Automatic level difficulty adjustment in platform games using genetic algorithm based methodology. Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University. (Cited: October 14, 2010) (2010)Google Scholar
  154. 154.
    Weisman, S.: Computer games for the frail elderly. Gerontologist 23(4), 361–363 (1983)CrossRefGoogle Scholar
  155. 155.
    Wiemeyer, J., Kliem, A.: Serious games in prevention and rehabilitation-a new panacea for elderly people? Eur. Rev. Aging Phys. Act. 9(1), 41–50 (2011)CrossRefGoogle Scholar
  156. 156.
    Yavuzer, G., Senel, A., Atay, M.B., Stam, H.J.: Playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. Eur. J. Phys. Rehabil. Med. 44(3), 237–244 (2008). pMID: 18469735Google Scholar
  157. 157.
    Zigoris, P., Zhang, Y.: Bayesian adaptive user profiling with explicit & implicit feedback. In: Proceedings of the 15th ACM international conference on Information and Knowledge Management, CIKM 2006, pp. 397–404. ACM (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Digital Media Lab, TZIUniversity of BremenBremenGermany

Personalised recommendations